
w

m

i

w

w

!

w

k

©

L--,

cZ3
©

"v.---4

"v----4

©

@

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

BUILDING A GENERALIZED DISTRIBUTED

SYSTEM MODEL

By

R. Mukkamala, Principal Investigator

Progress Report

For the period February 1, 1992 to July 31, 1992

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

Under
Research Grant NAG-l-Ill4

Wayne H. Bryant, Technical Monitor

ISD-Systems Architecture Branch

(_:_SA-C !_,-i'.404q9) _UILclNG A
,FHT_.':ALIZ[U ._[ST,K[_'UTZ_ SYSTt"I

:',',-!__L _ro,_r,-ss Report, 1 Feb. -

jul. I-'O2 (Lla uominion Univ.)

July 1992 l?_ ,_

31

G_/61

N�?-309uO

Unclas

0105120

1 Introduction

In the 1991-92proposal,we presenteda scheme to implement the distributed

system simulator.To thisend,we have designedand implemented the mod-

ules.These were writtenin C. The graphicsinterfaceto the system isyet

to be developed. In the coming year,we propose to complete the graphics

interfaceand use the prototypesystem to validatesome theoreticalmodels

of prototypes.

The PhD student supported by thisgrant has successfullycompleted

the candidacy examination. The student'splan of researchfor the thesis

has alsobeen approved by the thesiscommittee. The researchis now in

progress.The proposalreportsare enclosedhere.

We have alsolookedat storageefficientschemes to implement replicated

distributedsystems. The resultsfrom thisresearchare accepted for publi-

cationin the IEEE Transactionson Knowledge and Data Engineering. In

addition,we have alsolookedat the modeling of gracefullydegradingcom-

putingsystems.These resultswillappear inMicroelectronicsand Reliability

Journal.

In thisreport,we summarize our progressin thesefour areas and then

describethe proposed work for1992-93.

2 Distributed System Prototype

The work has centered on buildinga distributedsystem prototype that

would help us study the performance determinants,bottlenecks,and the

effectof variousalgorithmsand policieson the system. We have designed

and builta flexibledistributedsystem prototype which isvery general in

the sensethatmodificationof a module or segment ofthe code totesta new

policyor to add a new policycan be done with ease without concern about

reconfiguringthe whole system.

The system comprisesofindependentmodules thatcommunicate among

each other to achievean objectivewhich in our case isthe processingof a

transa£tion. We define a transaction to be an atomic processing entity that

transforms the stored data from one consistent state to another. The stored

data in question are the data objects (or resources) that can be manipulated

by using such operations as read, write and compute. A typical transaction

is a sequence of reads and writes (the introduction of the operation of com-

pute is trivial and does not help us study anything new). Following is a

brief descriptionof the variousmodulesinvolvedand their functionalities
includingthe variouspolicy optionsgoverningtheir operation.

2.1 System Description

The various modules that are involved and their interactions are shown in

Figure 1. Currently, sites (or nodes) are assumed to be identical in behavior

with respect to transaction processing. In other words, heterogeneous han-

dling of transactions is not introduced into the system at this stage. The

figure also shows the operations that involve cooperation between the sys-
tem modules to execute distributed transactions. The attached table (see

Appendix) gives a complete listing of the op-codes and the corresponding
actions.

The functionalities of the modules can be best appreciated by viewing

the stages of processing a transaction goes through. The user at a working
terminal seeks to run a transaction which involves reads and writes of data

objects that reside at possibly multiple sites. The transaction is submit-

ted to the User Transaction Manager or UT which verifies the syntax of the

transaction and transfers it to the Global Transaction Manager (GTM). The

function of the GTM is to keep track of the state of all active transactions

both remote and locally processed ones. GTM parses the query and finds

the required objects and the operations to be performed on them. Each

such entity (the object-operation pair) is treated as a subtransaction. The
execution of the transaction now involves the the execution of these sub-

transactions. Now the GTM requests the Replica Controller (RC) for the

location and the quorum (for read/write) information about each object.

The replica controller maintains a list of all the sites participating in the

functioning of the overall system, information about the objects residing at

the site viz., object-id, site-id, votes required for read and write.

Many replica control algorithms were proposed. Among them, vote as-

signment and coterie are two of the best. In the method of vote assignment,

a number of votes are assigned to each site in the system, and a group whose

members have a majority of the total votes (called majority group) is al-

lowed to performed the operations. Mutual exclusion is achieved because at

a given time at most a single group can have a majority of votes at a time.

The disadvantage of this method is the operation can not performed if no

group has a majority. Lamport suggested the method of coterie. In this

method, we define a set of groups that may perform the operations. Each

pair of groups should have a node in common to guarantee mutual exclusion.

The policy we have a chosen is a special case of the first policy in which,

the size of the majority group is one for read operations and equal to the

total number of sites holding copies of the data object, for torite operations.

We call it the read one write all policy which means that to perform a read

operation on a data object one needs to acquire a lock (shared) from any

one of the sites at which the data object resides, however to perform a write

operation we need to get locks (exclusive) from all sites at which there is a

copy of the object in question.

Based on the response from RC, the GTM sends requests to the Global

Concurrency Control Manager (GCCM) to acquire the locks for the objects

to be manipulated. At this stage objects could be local to the site or residing

on a remote site. If an object resides at a remote site then the lock request

command is passed to the corresponding sites GCCM. The quorum number

is used to check if the required number of sites have responded (granted

locks) so that the further processing can proceed. The GCCM sends local

lock requests to the Local Concurrency Control Manager (LCCM). Depend-

ing upon the availability of the object at the time the request is made (some

other transaction could have gained an exclusive lock) a lock granted or a

lock refused message is sent back by the LCCM.

The GCCM upon receiving the required number of locks granted mes-

sages sends a response to the GTM indicating that the quorum is satisfied.

The GTM now sends messages that involve the execution of each subtransac-

tion. Subtransactions involving objects residing at remote sites are passed

to the GTM at the corresponding remote site, after which its processing

follows the same lines as the normal (local) subtransaction. Subtransac-

tions that are local (also include subtransactions received by the GTM from

other sites) are passed to the Local Transaction Manager (LTM). At this

stage there is no way to distinguish between a local and remote transac-

tion. Subtransaz:tions may involve either reading or writing (modifying) an

object.

If its a read operation then the LTM directly contacts the Resource Man-

ager (RM) to perform the read operation. The RM acts as a scheduler for

read write requests for read write requests. The object in question is read

and its value is returned as a response to LTM. If however, the operation

is a write operation, the LTM sends a "logical write request'(different from

physical write - to implement two.phase commit) to the Local Transaction

Recovery Manager (LTRM). The LTRM maintains the commit status of

subtransactions. The LTRM on receiving a logical write request stores the

object-id and the corresponding value in a data structure (physical write

4

is still not done). Alsoa logical write done response is sent to the LTM,

which is propagated by the LTM to the GTM. On receiving/not receiving

successful write done(logical) from all (within the quorum limit) sites, the

GTM makes a decision to commit/abort the subtransaction. A two-phase

commit protocol is used to ensure that either all sites commit or all abort a

transaction thus maintaining data consistency.

2.2 Current Status

The prototype has been built and is being currently tested. Currently we

are looking for bottlenecks in the system. We are looking for the possibility

of deadlocks and the mechanisms one can use to avoid/prevent them(and

obviously the cost involved in doing do). The impact of policies is another

important phase of the project, we are currently investigating upon the

policies that might have to be considered in the various modules of the

system. With multiple user transactions being executed concurrently and

depending upon the policies chosen in each module we might face problems

that are typical of the policy or the combination of them (e.g., Read Write

hazards). We intend to develop an interactive, menu driven graphical user-
interface, once we introduce a more concrete and practical concept of the

user-transaction. Work towards this end is almost complete, however it is

not yet implemented.

3 Distributed Real-time Systems: Thesis work

Due to the importance of reliability and timeliness in real-time systems,

the application of distributed systems in this area is now well recognized.

In this context, we propose to look at the issues of mutual exclusion and

replica control in these systems. A complete summary of the proposed work

is enclosed with this report. Here, we summarize the proposed work.
In the context of mutual exclusion problems, we propose to investigate

the following issues.

• Develop criteria to classify/evaluate mutual exclusion algo-
rithms of distributed real-time systems. This work should re-

sult in metrics to express the suitability of a given ME algorithm to

distributed real-time applications. Even though the optimistic algo-

rithms appear to be more suitable to real-time applications than the

conservative ones, it is not clear if this classification is sufficient.

5

Suggest modifications to existing mutual exclusion algorithms

to meet the needs of real-time applications. Having arrived at

a classification, we propose to analyze some of the existing ME al-

gorithms and classify them accordingly. In addition, we propose to

suggest modifications to the algorithms to transfer them from a less
suitable class to a more desirable class. This should be possible by

changing the grant/release rules in an algorithm.

Develop new mutual exclusion algorithms for distributed real-

time systems. Using the properties derived from the classification,

we will attempt to construct new algorithms that are suitable for real-

time applications. In fact, it may result in a suite of algorithms where

the choice will depend on the semantics of the application.

• Evaluate the algorithms using the criteria developed above.

This may involve using both analytical and simulation tools.

Develop guidelines for future development. If in the process of

development and analysis, we have developed sufficient insight regard-

ing the applications and the algorithms, we may be able to develop

some general guidelines for future work. However, this should be per-

ceived more as wishful thinking than as a promised delivery.

In the context of replica control, we propose to investigate the following

issues.

• Model some typical application related semantics where replication is

needed to improve the reliability and availability.

• Develop criteria to evaluate the replica control algorithms of distributed

real-time systems.

@ Study the existing replica control algorithms in the environment of

real-time applications. Characterize them in terms of their suitability

to real-time systems.

• Develop new replica control algorithms for distributed real-time sys-
tems.

• Evaluate the algorithms with the established criteria.

The plan of research is also summarized in the enclosed proposal docu-

ment.

6

4 Measuring the Effects of node clustering on

system performance

This research deals with the effects of node clustering on a distributed token-

ring based scheme in a distributed system. While almost all the existing

schemes treat each of the physical site as a node in the logical ring, it

creates performance bottlenecks due to the long propagation times along the

physical ring. This is especially inefficient when the requests for a resource

are nonuniform among the nodes. We propose and analyze the performance

of a mutual exclusion scheme based on such clustering. We conclude that

• Token-ring based mutual exclusion algorithms are better suited under

heterogeneous loads than homogeneous loads.

• Clustering nodes based on their load patterns significantly improves

system performance.

• The behavior of the clustered system is more complex to analyze than

an unclustered system.

The results of this work are presented at the Pittsburgh Modeling and Sim-

ulation Conference, May, 1992. The complete paper is enclosed here.

5 Storage efficient and secure replicated distributed

databases

Data availability and security are two important issues in a distributed

database system. Existing schemes achieve high availability at the expense

of higher storage cost, and data security at the expense of higher processing

cost. In this work, we develop an integrated methodology which combines

the features of some existing schemes dealing with data fragmentation, data

encoding, partial replication, and quorum consensus concepts to achieve

storage efficient, highly-available, and secure distributed database systems.

The results from this work will appear in IEEE Transactions on Knowledge

and Data Engineering in 1992. A complete copy of the paper is enclosed

here.

7

6 Modeling and analysis of Gracefully Degrading

Computing Systems

Much of the existing work on gracefully degrading computing systems are

only applicable when the life distribution for the system components is ex-

ponential. In this work, we develop an order-statistics based model for

these systems. We show the generality of this model by deriving expressions

for system reliability, mean-time-to-failure, and mean-computations-before-

failure. In addition, we derive some interesting properties for the failure rate

of such a system . In particular we show that the failure rate of a gracefully

degrading system with i.i.d. DFR (Decreasing Failure Rate) components is

also DFR if the coverage probability is less than 1/2. This generalizes a well

known result for series systems. The results from this work will appear in

Microelectronics and Reliability Journal in 1992. A complete copy of the

paper is enclosed here.

7 Summary of Accomplishments in 1991-92

We have published the results of our research (since August 1991) in one

conference proceeding and two journals. Currently, we are working on two

journal papers. In addition, the PhD student funded by this project has

written two reports related to the distributed real-time systems. These
form the basis for the future PhD thesis work.

. Y. Kuang and R. Mukkarnala, "Measuring the effects of node clus-

tering on the performance of token ring based mutual exclusion algo-

rithms," 199_ Modeling and Simulation Conference, Pittsburgh, PA,

May 1992.

. N.R. Chaganty and R. Mukkamala, "Order Statistics based modeling

of gracefully degrading computing systems," To appear in Microelec-

tronics and Reliability Journal, 1992.

.

°

R. Mukkamala, "Storage efficient and secure replicated distributed

databases," TO appear in IEEE Trans. Knowledge and Data Engi-

neering, 1992.

Y. Kuang, "Design and analysis of distributed real-time systems," A

report prepared for the PhD thesis committee, 1992.

5. Y. Kuang, "Mutual exclusion and replica control in distributed real-

time systems: A proposal," 1992.

In addition, our current work on building the prototype for a distributed

system should result in several conference papers in 1992-92.

8 Proposed Research Efforts in 1992-93

During the next grant period (August 1992 - July 1993), we propose to

continue the development and testing of the distributed prototyping system.

We also wish to employ it in determining the performance of selected schemes

in distributes systems. The main problems we propose to solve during this

period axe:

• Complete the testing of the prototype.

• Enhance the functionality of the modules by enable the experimenta-

tion with more complex protocols.

• Use the prototype to verify the theoretically predicted performance of

locking protocols, etc.

• Work on issues related to real-time distributed systems. This should

result in efficient protocols for these systems.

m

,,,m,r

w

mm

E

oanl

L.

cs_
omU

l_

E
fu

om

m

n

f.1

/
/

APPENDIX

Distributed System Prototype: Operational Description

Notation Description

GCCM

GTM

LCCM

LTM

LTRM

RM

RMC

UTM

Global Concurrency Manager

GLobal TransactionManager

LocM Concurrency Manager

Local TransactionManager

Local TransactionRecovery Manager

Recovery Manager

ReplicaController

User Transactionmanager

10

7=.

Op_code#

a°

b°

Operation Explanation(withformat)

UT module sends a transactionto GTM. The transactionmay look

like:

Read A

Read B

Write C

Write D

where each Read/Write iscalleda "Subtransaction".

The message format is:

[USER_TRANSACTION_REQUEST(L)][USER_TRANSACTION_B EGIN(I)}

[USERID(1)][READ_OP(1)][ITEMID(1)][WRITE_O P(1)]

[ITEMAD(1)][DATA(1)]...[USER_TRANSACTIO N_END(1)]

GTM makes subtarnsactions for every Read/Write of an item

(eg. A, B) and sends a request to RC for complete knowledge

of replication and qourum needed for R/W.

The message format is :

[QOURUM_READ(WRITE)_REQUEST(L)][USER_TRANSACTION_ID(1)]

[SUBAD(1)][ITEMJD(1)][R/WID(1)]

RC findsan optimal listofsitesneeded for R/W qourum of an
item ina subtransaction.RC sends thislistto GTM.

The message format is:

[QOURUM_READ(WRITE)_REPLY(L)][USER_TRANSACTIO N_ID(I)]

[SUBID(1)][ITEM_ID(1)][R/W_ID(1)][Q UO RUM(1)][NU M_SITES(1)]

[SITENAMEI(I,S)][VOTEI(I)]...

[QOURUM_READ(WRITE)_REFUSED(L)][USER_TRANSACTION-ID(1)]

[SUB_ID(I)][ITEM_[D(I)][R/W ID(I)]

11

Op_code#
4

5a

5b

6b

Operation Explanation(with format)

For Subtx GTM passes the list of sites obtained from RC to

GCCM for making lock requests to local/remote site LCCM.

The message format is :

[LOCKS_REQUEST(L)][USER_TRANSACTIONID(I)]

[SUB_ID(I)][ITEMID(I)][R/W_ID(I)][QUORUM(I)][NUM_SlTES(I)]

[SITENAMEI(I,S)][VOTEI(I)]...

If the resource to be R/W for a subtx is local, a lock

request is made to LCCM by GCCM.

The message format is :

[LOCK_READ(WRITE).REQUEST_LOCAL)(L)][USER_TRANSACTIO N_ID

[SUB-ID(I)I[ITEM-ID(I)][R/W-ID(I)]

If the item is at a remote site, the request is transferred

such that GCCM at the remote site handles it as if the

request came from remote site's GTM.

The message format is :

[LOCK_REQUEST.REMOTE(L)][USER_TRANSACTIO i_ID(I)]

[SUBID(I)][ITEM_ID(I)][R/W_ID(I)I[QUORUM(I)][NUM-SITES(I= 1)]

[SITENAMEI(I,S)][VOTEI(I)]

At remote site,above recievedrequestistransferredas

mentioned in step 5a.

The message format is:

[LOCK_READ(WRITE)_REQUEST_LOCAL)(L)][USER_TRANSACTIO N-ID

[SUB_ID(I)][ITEM_ID(I)]

12

Op_code#
6a

a°

b°

7b

8b

a°

b°

9

a.

b°

Operation Explanation(with format)

LCCM replies GCCM for a lock request with lock

granted/refused messages. GCCM keeps track of all such

granted/refused messages and #votes associated with them

The message format is :

[LOCK_READ(WRITE)_GRANTED_LOCAL)(L)]

[USER_TRANSACTIONAD(I)][SUB_ID(I)][ITEMID(I)]

[VERSION(I)]

[LOCK_READ(WRITE)-REFUSEr_.LOCAL)(L)]

[USER_TRANSACTION_ID(I)][SU B_ID(I)][ITEMID(I)]

see 6a.

Remote GCCM replies to the GCCM where the lock request

originated with granted/refused reply. Also #votes

associated are passed.

The message format is :

[LOCK_GRANTED_REMOTE(L)][USER_TRANSACTIO N-ID(I)]

[SUBID(I)][ITEM_ID(I)][R/WAD(I)][VERSION][SITENAME(S)][VOTE(I)]

[LOCK_REFUSED_REMOTE)(L)][USER_TRANSACTION_ID(1)]

[SUB_ID(I)][ITEM_ID(I)] [R/W_ID(I)] [SITENAME(S)] [VOTE(I)=0]

When GCCM has :

received enough votes to beat the R/W quorum for a subtx

then a subtx's all lock granted reply is sent to the GTM.

The message format is :

[LOCKS_GRANTED(L)I[USER_TaANSACTION-ID(I)]
[SUB.ID(I)][ITEM_ID(I)][R/W_ID(I)I[QUORUM(I)][NUM-SITES(I)]

[SITENAMEI(I,S)][VERSION(I)]...

Failed to receive enough votes for a subtx, then an

"abort" is passed to GTM.

The message format is :

[LOCKS_REFUSED(L)][USER_TRANSACTIO N-ID(I)]

[SUB_ID(I)][ITEM..ID(I)][R/W-ID(I)]

13

Op_code#
35
a.

b°

20a

20b

10a

a.

b°

Operation Explanation(with format)

If GTM gets a "lock abort" for a subtx of an incomplete Tx,
it sends a abort to UT.

The message format is :

[USER_T_ABORTED(L)][USER-TRANSACTIONAD(I)]

Send a "abort" to all LTMs where a lock is held. If a

local lock is held send "abort" to local LTM, else if lock

is held at a remote site, send "abort" to remote GTM

Local message format is :

[TRANSACTION_ABORTLOCAL(L)][USER_TRANSACTIONZD(I)]

Remote message format is:

[TRANSACTION_ABORT_REMOTE(L)][USER_TRANSACTION-ID(1)]

Ifa subTx isa READ(local):

A "read"operationissentto LTM.

The message format is:

[READ.REQUEST_LOCAL(L)][USER_TRANSACTION-[D(1)]

[SUB_ID(I)I[ITEM-ID(I)]

If a subTx is a WRITE(local):

A "write" operation is sent to LTM.

The message format is :

[WRITE_REQUEST_LOCAL(L)][USER-TRANSACTION-ID(I)]

ISUB_ID(I)][ITEM_ID(I)][VERSIO N(I)][D ATA(I)]

14

Op_code#
lOb
a.

b°

llb

lla,12b

12a,13b

13a,t4b

Operation Explanation(with format)

If a subTx is a READ(remote):

A "read" operationissentto remote GTM.

The message format is:

[READ.REQUEST_REMOTE(L)][USER_TRANSACTIO N_ID(I)]

[SUB_ID(I)I[ITEM_ID(I)]

If a subTx is a WRITE(remote):

A "write" operation is sent to remote GTM.

The message format is :

[WRITE_REQUEST_REMOTE(L)][USER_TRANSACTIO N_ID(I)]

[SUB_ID(I)][ITEM_ID(I)][VERSION(I)][DATA(I)]

same as 10a (Now requestis local).

Local READ operation:

LTM passesthe read operationto RM of the site.

The message format is:

[PHYSICAL_READ_REQUEST(L)][USER_TRANSACTION_ID(I)]

[SUB_ID(1)][ITEMAD(1)]

Local READ replyfrom RM to LTM.

The message format is:

[PHYSICAL_READ_DONE(L)][USER_TRANSACTIO N_[D(1)]

[SUB_ID(I)][ITEM_ID(I)][DATA(I)]

Local READ done replyfrom LTM to GTM:

The message format is:

[READ_DONE_LOCAL(L)][USER_TRANSACTIO N_ID(1)]

[SUB_[D(1)][ITEM_ID(1)][DATA(1)]

15

Op_code#
15b

10a,llb

16,18

17,19

13a,14b

Operation Explanation(with format)

Remote READ done is passed back to the GTM at which

it originated.

The message format is :

[READ_DONE_REMOTE(L)][USER_TRANSACTION_ID(I)]

[SUB_ID(I)][ITEM_ID(I)][DATA(I)]

Local WRITE operation:

GTM passes the write operation for an item mentioned in a
subTx to its LTM.

The message format is :

[WRITE_REQUEST_LOCAL(L)][USER_TRANSACTION_ID(I)]

[SUB_ID(I)][ITEM_ID(I)][DATA(I)]

LTM passesWRITE operationto LTRM :

The message format is:

[LOGICAL_WRITE_REQ UEST(L)][US ER_TRANSACTIO N_[D(1)]

[SUB_ID(1)][ITEM._ID(1)][DATA(1)]

LTRM sends "write done" reply to LTM.

LTRM actually stores the value in a datastructure.

(Physical write is still not done.)

The message format is :

[LOGICAL_WRITE_DONE(L)][USER_TRANSACTIONID(I)]

[SUB_ID(I)][ITEM_ID(I)]

A "prepared" message is sent to GTM by LTM when

a "write done reply" is received.

The message format is :

[PREPARED(L)][USER_TRANSACTION..ID(I)]

[SUB_ID(I)][ITEMID(I)]

16

Op_code#

20a,21

20b

22,29

23,30

Operation Explanation(withformat)

When correct# of "prepared" messages are/(arenot) receivedby

GTM forallwritesubTx's of a Tx, a commit/abort message

issentto localLTM forupdates(finalphysicalWR) and all

GTMs(remote) which are involvedin updates.

localmessage formats are(commit mad abort)(GTM to LTM):

[TRANSACTION_COMMITLOCAL(L)][USER_TRANSACTION_ID(1)]

[TRANSACTION_ABORTLOCAL(L)][USER_TRANSACTION_ID(I)]

Remote message formats are(commit and abort)(GTM to GTM):

[TRANSACTION_COMMIT_REMOTE(L)][USER_TRANSACTIO N_ID(1)]

[TRANSACTION_ABORT.REMOTE(L)][USER_TRANSACTIO N_[D(1)]

Commit or Abort ispassedto LTRM by LTM

The message format is:

[COMMIT_LOCAL(L)][USER_TRANSACTION_ID(1)]

[ABORT_LOCAL(L)][USER_TRANSACTION_ID(1)]

Lock releaserequestsforevery write/readlockheld for

that Tx issentto LCCM

The message format is:

[LOCK_RELEASE_REQUEST(L)][COMMIT(ABORT)]

[USER_TRANSACTIONID(1)]

17

Op_code#

31,24

36,38

37,39

32,25

33,26

27

Operation Explanation(with format)

Lock released is acknowledged by LCCM:

The message format is :

[LOCK_RELEASE_DONE(L)][USER_TRANSACTION_ID(I)]

"Physical writes" are sent to the RM.

The message format is :

[PHYSICAL_WRITE_REQUEST(L)][USER_TRANSACTION-ID(I)]

[SUBID(I)][ITEMID(I)][DATA(I)]

The "Physical write done" is sent back LTRM.

The message format is :

[PHYSICAL_WPdTE_DONE(L)][USER_TRANSACTIO N_ID(I)]

[SUB_ID(I)][ITEM-ID(I)]

"Commit Done" is sent back to LTM.

The message format is :

[COMMIT_DONE(L)][USER_TRANSACTIONID(I)]

"Commit Ack" is sent back to GTM.

The message format is :

[COMMIT_ACK(L)][USER_TRANSACTION-ID(I)]

Remote GTM sends the "Commit Ack" back to original GTM

The message format is :

[COMMIT_ACK_REMOTE(L)][USER_TRANSACTION_ID(I)]

18

Op_code#
35

28

34

38

Operation Explanation(with format)

GTM when receives enough # of commits ACKs from all

involved sites, it announces "User Transaction Done" to UT

The message format is :

[USER_TRANSACTION_DONE(L)][USER_TRANSACTION_ID([)]

Killtransactionfrom GTM to GCCM

(Abort sentby GTM to LTM)

The message format is:

[KILL_TRANSACTION(L)][USER_TRANSACTION-ID(1)]

"Done Transaction"from GTM to GCCM

(Commit sentby GTM to LTTM)

The message format is:

[DONE_TRANSACTION(L)][USER_TRANSACTION-ID(1)]

GCCM shouldreleasealldatastructuresforthat Tx.

"Rea_l_V_lue"from GTM to UT

For every subtransa_:tion,when a read_done comes from LTM or

remote GTM, thismessage with a returnvalue ispassed to UT

processthat generatedit.

The message format is:

[READ_VALUE(L)][USER_TRANSACTION_ID(I)][SUB_ID(1)]

[ITEM_ID(1)][VALU E(1)]

19

MEASURING THE EFFECTS OF NODE

CLUSTERING ON THE PERFORMANCE OF

TOKEN RING BASED

MUTUAL EXCLUSION ALGORITHMS

Yinghong 'Kuang Ravi Mukkamala

Department of Computer Science

Old Dominion University
Norfolk, VA 23529-0162

ABSTRACT

Token-ring based mutual exclusion algorithms are attractive due to their operational simplicity

and the guaranteed starvation-free and deadlock-free operations. Existing studies have looked

at the behavior of these algorithms under homogeneous load conditions. In this paper_ we

investigate their behavior under heterogeneous loads. In addition, to reduce the long idle token

rotations, we suggest clustering of nodes. The behavior of the system under clustering is also

investigated. We conclude that the token-based mutual exclusion algorithms display improved

performance under load heterogeneity and node clustering.

1. INTRODUCTION

A distributedsystem consistsof a set of processing nodes connected through a communica-

tion subsystem. The nodes have no shared memory and communicate with one another through

message passing.The system alsocontainsa setofresourcesshared among the nodes in the sys-

tem. Providing mutually exclusiveaccessto the shared resourcesisa fundamental responsibility
of a distributedsystem.

A number of distributedalgorithms which implement system-wide mutual exclusion have ap-

peared in the literature[I,3, 5, 8, 9]. These can be classifiedinto two classes:token-based

and non-token based. In token-based algorithms,only the node holding the token can enter the

criticalsection to access the resource in a mutually exclusivefashion. In general,the current

token holder decideson the next node to whom the token should be passed to. In a non-token

based algorithm,a node seekingmutually exclusiveaccessshould gain permissionfrom eitherall

or a subset ofnodes in the system priortoenteringthe criticalsection.In general,the non-token

based algorithms involvemore messages per requestthan token-based systems.

In this paper, we are consideringa specialset of token-based algorithms: token-ring based

algorithms. Here, nodes in a distributedsystem are connected in a logicalring structure. A

special message called token rotates around the ring. A node can access a shared resource only

when it receives a token, which is handed to it by its logical neighbor on the ring. The fact

that the system incurs a fixed overhead of rotating the token along the ring continuously has

deterred many distributed systems from using this mechanism to implement mutual exclusion.

However, when reasonable load is present on the shared resource, then the fixed overhead in a

token ring more than compensates for the multiple messages that are exchanged in other token
based systems and especially in non-token based systems.

Even though a number of performance analyseshave been carriedout on token-ringbased sys-

tems, almost allthe studiesassume uniform load among the nodes in the system [2,6]. Even

though such assumptions are attractiveforanalyticaltractability,they do not representinprac-

ticalsituations.For thisreason,in thispaper, we concentrateon heterogeneous loads.Analysis

of systems under homogeneous loads isonly used as a means of comparison for heterogeneous

loads. In addition,to reduce the idletoken rotationtime along the ring,we introduce the con-

cept of node clustering.Here, nodes are grouped into clusters,and the clustersare connected

through a logicalring,thereby reducing the totalnumber of entitieson the ring. We also de-

termine the impact of clusteringon the performance of the system. Unlike severalstudiesthat

assume exponential arrivalof requestsat each node, we assume a process model at each node.

The model isexplained in detailin Section2.

2. MODEL

We model the distributed system as a set of n autonomous nodes connected through a com-

munication system. Each node runs a single process executing an infinite loop. Each process

loop consists of three stages: (i) Compute, (ii) Wait for a resource, and (iii) Access the resource

by entering the CS (critical section) and then release the resource. This is described in Figure

A. We assume that there is only one shared resource in the system.

The time process Pi stays in the compute state in any iteration is assumed to be exponentially

distributed with mean cl (sec.). Similarly the timethat a process retains the resource (or remains
in CS) is assumed to be exponentially distributed with mean s_ (sec.). The distribution of the

time in the wait state (w_) depends on the token propagation policy and the requirements of
other nodes in the system.

When we consider a homogeneous system, all n nodes have the same characteristic. Hence,

cl = c_ = ... = c,_ = c and sl = s2 = ... = s, = s. We express the load offered by the n nodes

on the shared resource as n • s/c or i00 • n • s/c when expressed as a percentage.

In the case of heterogeneous systems, we consider two types of nodes: high-load nodes and low-

load nodes. Assuming that the average service time is the same for both nodes, we distinguish

the two types of nodes by the average time in the compute state: ct and ch.
Node Clustering:

In addition to determining the effect of load heterogeneity, we are also interested in finding the
effects of node clustering on mutual exclusion algorithms. Especially, when practical distributed

systems are built as clusters of nodes, this aspect is extremely important.

Based on the physical proximity, nodes are clustered. For simplicity, we assume clusters of equal
size. For example, when 100 nodes are grouped into 10 clusters, each cluster will have 10 nodes.

In addition, each cluster will offer approximately the same load on the shared resource. Thus,

load heterogeneities at the node level do not appear at the cluster level. (We are currently

looking into the load heterogeneity at the cluster level.) The clusters are connected through
a logical token ring. Hence, only adjacent clusters communicate. The nodes within a cluster,

however, have point-to-point connections. Hence, any node can communicate to any other node

within its cluster. One of the nodes in the cluster acts as an agent for the cluster in the logical

ring. This agent is responsible for managing the token on behalf of the cluster: receiving the

token from the preceding cluster, distributing the token within the cluster, and delivering it to
the successor cluster on the ring.
Mutual Exclusion Protocol:

Since we are dealingwith mutual exclusionina clusteredsystem, we need todefinethe protocol

adopted within a clusterand among the clusters.Following protocolisadopted in our study.

Step I. Within a cluster,nodes contend for mutual exclusion using a typicalnon-token based

algorithm such as Lamport's algorithm [3] or Ricart and Agrwala's algorithm [8]. The
message delay between any two nodes within a cluster is assumed to be the same. A node

that has obtained permission from all other nodes cannot access the resource (or enter CS)

Step2.

Step3.

untilitsclusteragent has obtained the token.

When a clusteragent receivesa token, itdetermines ifany of itsnodes requireit. Ifno

node requires it,then the token is passed to the next cluster.Otherwise, the token is

passed to the node to whom the agent has given priorpermission to enterCS.

When a node withina clusterreleasesthe resource,itpassesthe token to the next contender

within the cluster. This process continues until no more nodes require the resource. At

this time, the agent passes the token to the next cluster.

In this paper, we are not considering issues such as node failures, agent failures, or link failures.

We assume the use of existing distributed election mechanisms to handle such events [7].

3. RESULTS

Figures 1-3 summarize the results obtained in this study. Since analysis is almost intractable, we

have used simulation to obtain these results. Each figure contains results obtained with uniform

and heterogeneous loads. (Note: In all the figures, the left-hand side graphs correspond to the

heterogeneous case and the right-hand side to the uniform case.) In the case of heterogeneous

load, we assume a 20/80 policy which implies that 20% of the nodes have 800£ of the overall

load requirement for the shared resource. In other words, out of the 100 nodes that we have

considered, 20 nodes are high-load type and contribute to 80% of the requests for the resource.

The remaining 80 nodes are low-load type and contribute to 20% of the requests for the resource.

The simulation is carried out with two types of clustering: (i) Group the 100 nodes into ten

clusters,each containing ten nodes. (ii)Group the nodes into twenty clusterseach containing

fivenodes. Ineach case,we have ensured that the totaldemand forthe shared resourceisequally

distributedamong the clusters.In addition,we have consideredthe unclusteredcase with I00
nodes.

Since the system behavior isdependent on the propagation delay (or idletoken rotationtime)

along the ring and the average servicetime (s) at the shared resource (per request),we have

experimented with ratiosof these two times. Ifd isthe average propagation time between any

two adjacent nodes on the ring,and c isthe number ofclusters,then c.d isthe idletoken rotation

time. We kept the average servicetime constant at I second, and varied d. In particular,we

have experimented with valuesof d = 0.01,0.I,1.0(in sec.).
We have considered severalload factors:low loads such as 10% and 25%, medium loads of 50%

and 75%, and high loadsof 100%.

Figure I illustratesthe effectsof the load factors,load heterogeneity,and node clusteringon

average response time. Here, response time ismeasured as the time elapsed between when a

node desiresto acquire mutually exclusiveaccess to the resource to the time itreleasesthe

resource.Hence, itincludesboth the waiting time and the servicetime.

Figure 2 summarizes the average resourceutilizationunder differentconditions.Here, resource

utilizationrefersto the fractionof the time the shared resource isused by any of the nodes.

Clearly,the utilizationof the resourceislimitedby the load factor.However, other factors,such

as idletoken rotationtime and load distributionsmay substantiallyreduce the utilization.

Figure 3 summarizes the average token rotationtimes under differentconditions.In each token

rotation time, c. d sec. isthe fixedcomponent due to idlepropagation time around the ring.

The restisattributed to servicetimes at the nodes. Thus, increasein average token rotation

time indicates increase number of services per token rotation.

We will now attempt to explain the observed behavior of the system, and draw some valid
conclusions.

First, let us consider the effects of load heterogeneity with no clustering of nodes. Here, the
idle token rotation time is 100d sec. which varies from 1 sec. when d = 0.01 to 100 sec. when

d -- 1.0. It may be observed that

The response time is significantly improved with load heterogeneities. One of the prime

reasons for this improvement is the reduction in synchronous-like behavior of token usage

observed in token-rings with uniform loads [4]. Under uniform loads, there is a tendency
to form two kinds of token rotations: one in which no node uses the token and the other in

which many attempt to use it. In other words, the usage of the resource is not uniform over

time under uniform load. However, under the heterogeneous load, the idle token rotations

are reduced considerably, resulting in less variations in token rotation times. This improves

the average response time at the nodes. This is an important result.

The resource utilization is slightly lower with heterogeneous loads. This is especially no-

ticeable when dis = 0.1. To explain this phenomenon, we need to examine the underlying
node model. Since each node represents a process with a compute, wait for the token,

access and resource release cycle, the requests for the resource depend on if earlier request

was fulfilled. In the case of heterogeneous load, the high-load nodes have smaller compu-

tation times. However, once the token is released, even if it has finished its computation,

a node has to wait until the token comes around. In the meanwhile, the token has visited

other low-nodes with a low probability of usage. Hence, the reduced resource utilization.

This observation may not be valid in a typical system with independent requests arriving
at a node.

The average token rotation is significantly lower with heterogeneous load. This confirms the

above observation of lower utilization as well as the fact that the usage is better distributed
among the token rotations than in a uniform load condition.

Now letus consider the effectofclusteringon system performance. The main effectof clustering

isto reduce the idletoken rotationtime. The effectismore significantwhen d --"1.0 where the

idlerotation time isreduced from 100 sec. to 20 sec. in a 20-clustersystem and i0 sec. in a

10-clustersystem. This isa significantsavings. The effectislessvisiblewhen d = 0.01 where

the i sec.rotation time isreduced to 0.2 sec.in a 20-clustersystem and 0.1 sec. in a 10-cluster

system. The second effectof clusteringisto reduce idletoken rotations.Since a clusterhas

a number of nodes the probabilityof at leastone node requiringto access the resource when

a token isreceived by the clusterismuch higher than in an unclustered configuration.This

significantlyimproves the resourceutilization.In summary,

* Clustering improves response time under heterogeneous and uniform loads.The improve-

ment isattributed islessvariationsin token rotationtimes due to better distributionof

requestsamong the token rotations.For thisreason,the improvement under heterogeneous
load ismore distinctthan under uniform load.

• Clustering has no impact on the overallutilizationunder homogeneous loads. Itsimpact

under heterogeneous loadsisquitecomplex toexplain.While the utilizationissignificantly

reduced in a 10-clustersystem atd = 0.01,the 20-clustersystem has better utilizationfor

higher values ofd. Further investigationsare requiredto explainthisbehavior.

• Under homogeneous load,clusteringhas significantlyhigher token rotation time than the

unclustered.This isnot an obvious result.While the idletoken rotationtime has reduced

with clustering,the servicesper visitof a token have increased.This has resultedin an

increaseofthe token rotationtime. Under heterogeneous load,the token rotationbehavior

issimilarto that ofutilizationas explained above.

In summary, we conclude that:

• Token-ring based mutual exclusionalgorithms are bettersuitedunder heterogeneous loads

than homogeneous loads.

• Clustering nodes based on theirload patterns significantlyimproves system performance.

• The behaviorof the clusteredsystem is more complex to analyze than an unclustered

system.

4. CONCLUSION
t

In this paper, we have proposed and analyzed the performance of token-ring based distributed
mutual exclusion algorithms. Especially, we looked at the effects of heterogeneous load and node

clustering on system performance. The system performance has significantly improved under

heterogeneous loads. Clustering has also improved the performance. We are currently study-

ing algorithms to manage multiple resources based on the same principles as explained in this

paper. These are relevant in transaction environments where a transaction may require one or

more resources (i.e. data items) prior to start of execution.

5. ACKNOWLEDGEMENT

This research was sponsored in part by the NASA Langley Research Center under contract

NAG-I-Ill4.

References

[1] Y. I. Chang, M. Singhal, and M. T. Liu, "A dynamic token-based distributed mutual exclu-

sion algorithm," IEEE Phoeniz Conf. Computers and Communications, pp. 240-246, 1991.

[2] A. Gravey and A. Dupuis, "Performance evaluation of two mutual exclusion distributed

protocols via Markovian modeling," Proc. Sizth IFIP Workshop on Protocol Specification,

Testing, and Verification, pp. 335-346, 1987.

[3] L. Lamport, "Time, clocks, and the ordering of events in a distributed system," Commun.

ACM, Vol. 21, No. 7, pp. 558-565, 1978.

[4] R. J. T. Morris and Y. T. Wang, "Some results for multi-queue systems with multiple cyclic

servers," Performance of Computer Communication Systems, IFIP, pp. 245-258, 1984.

[5] S. Nishio, K. F. Li, and E. G. manning, "A resilient mutual exclusion algorithm for computer

networks," IEEE Trans. Parallel and Dist. Systems, Vol. I, No. 3, pp. 344-355, July 1990.

[6] S. Peterson and J. Kearns, "Performance evaluation of network mutual exclusion protocols,"

Computer Science Tech. Rep. 89-2, The College of William and Mary, 1989.

[7] M. Raynal, Distributed algorithms and protocols, John Wiley & sons, 1988.

[8] G. Ricatt and A. K. Agrawala, "An optimal algorithm for mutual exclusion in computer

networks," Commun. ACM, "Col. 24, No. 1, pp. 9-17, Jan. 1981.

[9] I. Suzuki and T. Kasami, "A distributed mutual exclusion algorithm," A CM Trans. Com-

puter Systems, Vol. 3, No. 4, pp. 344-349, Nov. 1985.

10

average 6
tokcn

rotation

time(see) a

average

token

rotation

time(see)

average

token

rotation

time(see)

x no clustering

• _/cluster = 20

÷ #cluster = 10
o

s = 1.0 /-

. d=_

0 20 40 60 80 100

load factor (percent)

Figure 3 l<l ,, no clustering I
• #cliL_ter = 20 /

12 ÷ #chLrter = I0 / --
/

,o ._=l.o I f

13

6

4

2

0
0 20 40 60 80 l O0

load factor (percent)

120

80 _t no I _t no clustering
clustering 10o • #clu.$ter --- 20 L_,/_

• #cluster = 20 _ + #clu._ter = I0 //

+ #cluster - lO //60

s=,.o /" '/ ,o s:,.o II
,:o., // 1/.

40

40

400 _

1 lit m! clustering
i = no clustering I ,#.c(uster : 20

•#ctu=r:20 i l+#ct__

300200L___=1O÷#cluster = I0 /[300200/

= l.O

d= 1.0 / 100

0 0 20 40 60 80 100
load factor

{_ t_

load factor (,percent) _ _rcen.,

20% of the nodes take up 80% of the load;
Uniform load;

average
ud[izadon

average
utilization

I"I x noclustering

0.8

0.6

0.4

0.2

•#cluster= 20 /_

+ #cluster = I0 //
/"/

s= 1.0 ._

20 40 6O BO 100

load factor (lxrccnt)
o

1

0.8

0.6

0.4

0,2

xnoclustcring
• #cluster = 20

+ #cluster = 10 ._

s=l.o f
d=O.l

20 ,_0 60 80 1oo

toad factor (percent)

0.8

0.6

x noclustering
• #cluster = 20

+ #cluster = 10

0.4

0.2

0
= 1.0

20 40 6O 80 too

load factor (percent)

20% of the nodes take up 80% of the load;

Figure 2

08

06

04

02

0

x noclustering

• #clu.,tcr = 20 _"

+ #cluster = 10 _¢¢

s= 1.0 J"

20 40 60 80 I O0

load factor (percent)

0,8

0.6

0,4

02

0
0

= noclustcring

• #cluster = 20 _lr

¢"#chtrter = 10

 -lo /7

20 40 60 80 1O0

load factor (percent)

0.8

0.6

I noclustering
• #clu_,ter = 20

+ #clu._ter = I0

d= 1.0
J

20 40 60 80 IO0

load factor (percent)

Uniform load;

average

response
thnc

(see)

average

response
time

(scc)

average

response
time

(see)

x noclustering "_

• #cluster = 20 //

+ #cluster = I0 /

,=1.o / p

0 20 40 60 80 100

load factor (percent)

16

12

z noclustering /_

• #cluster = 20 /

÷ #cluster = 10 _/"

/

s= 1.0
d=O.I

4

oo 20 40 60 8o loo

load factor (percent)

100 I x noclustering

I "#cluster=20

40

_ _,_[Ft ¢ d=l 0

0 20 40 60 80 100

load factor (,percent)

20% of the nodes take up 80% of the load;

Figure I
10

3o

= noclustering X

• #cl_ler = 20 /
÷ #cluster = 10 /

s=l.0 /]

20 40 60 80 1O0

load factor (percent)

25

2o

15

10

16(]

= noclustering

• #cluster --"20 //_

÷ #cluster = I0 /

20 40 60 80 100

load factor (percent)

x noclustering A

• #cluster = 20 //

÷ #clu._ter = 10 //

s=o /'/,t"

140

120

100

80

60

40

20

0
20 40 60 80 1O0

load factor (percent)

Uniform load;

To Appear in IEEE Trans. on Knowledge and Data Engineering

Storage Efficientand Secure ReplicatedDistributed

Databases

Ravi Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

Abstract

Data availability and security are two important issues in a dis-

tributed database system. Existing schemes achieve high availability

at the expense of higher storage cost, and data security at the expense

of higher processing cost. In this paper, we develop an integrated

methodology which combines the features of some existing schemes

dealing with data fragmentation, data encoding, partial replication,

and quorum consensus concepts to achieve storage efficient, highly-

available, and secure distributed database systems.

Index Terms -- Availability, data encryption, data security, distributed

databases, integrated methodology, processing costs, quorum consensus,

replication, resiliency, storage cost.

1 Introduction

Data availability and security are two important requirements in distributed

database system design. Data availability refers to the resiliency of database

operations (read or write) to node and link failures in a system. For example,

if an object is read (write) accessible in spite of r node failures, then it has a

read (write) resiliency level of r [2, 4]. Data security has several definitions

in the literature [5, 9]. In the context of distributed database systems, it

may be defined as the maximum number of nodes that may be accessed

without compromising the contents of a data object. This is also referred to

as data confidentiality [2, 12, 13]. For example, if at least r nodes need to

be accessed before the information in a data object is compromised, then its

confidentiality is r. Since storage, processing and communication are three

limited resources in a distributed system, the objective of a designer is to

achieve the required availability and security with the minimum use of these

resources.

In general, high data availability is achieved through replication of data

objects in a system. Several replication schemes have been suggested to

achieve high availability through replication of entire objects [1, 6, 7, 8, 11,

14]. Here, availability achieved at the expense of considerable storage and

communication costs. These schemes do not address the data confidentiality

issue.

To reduce the storage overhead, Paris [10] proposed a protocol based

on the concept of witnesses. In this scheme, copies of data objects are

maintained at a few nodes, and a number of other nodes (called witnesses)

maintain only a version number for the object. Thus, if there are w witnesses

and (n-w) data copies, then the storage overhead is about (n-w) times the

sizeof theobject. This storagereductionis achievedwithout compromising

the fault-toleranceaspectsof the protocol. However,the protocolplacesa

numberof restrictionson the noderecoveryprocess[3, 10]. As before,this

schemedoesnot addressthe confidentialityissue.

To overcomethe complexitiesin noderecoveryandyet reducethe stor-

ageoverhead,AgrawalandE1Abbadi [3] proposedafragmentationmethod

in whichanobject is dividedinto n fragments and m copies of each frag-

ment are then distributed among n nodes with each node having m distinct

fragments. In this case, the total storage overhead due to replication is

(m - 1) times the size of the object. With m < n, this scheme can reduce

storage overhead considerably while offering high availability. Once again

this scheme does not explicitly address the confidentiality issue.

A scheme to implement data security in terms of confidentiality using

data encoding and decoding techniques was proposed by Rzbin [12]. In ad-

dition to offering security, this scheme incurs low storage overhead. The

reduction in storage overhead is achieved at the expense of increased com-

munication and processing overhead during read and write operations on the

object. To improve the data availability offered by this scheme, Agrawal and

E1 Abbadi [2] have integrated this technique with Gifford's quorum consen-

sus protocol [7] and Wuu and Bernstein's [15] log-based update propagation

scheme. However, they do not employ the data fragmentation concept as

a means of reducing data storage without incurring additional processing

overhead.

While each of the above mentioned schemes seem to offer some advan-

tages in terms of data availability, data security, low storage overhead, low

processing cost, or low communication cost, currently there is no single

3

schemethat hasattemptedto unify theseconcepts.

W'eanalyzethe costs and benefits of the concepts underlying the above

mentioned schemes, indicate the need for an integration of concepts, and

propose an outline of a design methodology that integrates these concepts.

2 Cost-Benefit Analysis of Underlying Concepts

We now analyze the concepts underlying schemes for data allocation and

management in distributed database systems discussed above. For simplic-

ity, the discussion is limited to a single data object z containing L characters

or bytes of information.

2.1 Quorum Consensus

This concept is the basis for many of today's highly available systems [7, 14].

Here, copies of the object z are stored at n[z] nodes. Each data item z is

associated with a read quorum, q_[z], and a write quorum, q_[z]. The read

and write quorums must satisfy the following requirements:

1 < qr[x] <_ nix] (1)

r(n[x]+ 1)/2)7_<q [x]_<nix] (2)

him] < qr[x] + qw[x] <_ 2. nix] (3)

Here, a read operation is executed by accessing qt[z] copies of z and

determining the most up-to-date copy using a version number associated

with each copy. A copy with the highest version number is then accessed

for read. Similarly, a write operation is executed by accessing qw[z] copies,

determining the highest version number, and updating all the accessed copies

with the new value as well as declaring them as the latest through a new

version number.
J

m

Clearly, since the entire data object is replicated at n[z] nodes, the stor-

age cost is L • n[x]. Since each read operation requires O(qr[z]) messages,

the communication cost for a read is O(q,.[z]). Similarly, the communication

cost for a write is O(qw[z]). Even though there is some processing involved

in comparing the version numbers, it is considered negLigible compared to

other database operations on the data object. Looking at the confiden-

tiality, since each copy contains an entire image of z, accessing any of the

n[z] copies will compromise security. Even though a copy may not always

be up-to-date, it still has the potential of compromising the data security.

Thus, this scheme offers zero confidentiality. From the description of the

read and write operations, it may be discerned that the read resiLiency level

is n[z]- qr[z] and the write resiLiency level is n[z] - q_[z].

2.2 Data Fragmentation

In order to reduce the high storage cost associated with full copy replica-

tion, this technique suggests fragmenting the data object, and replicating

the fragments among the nodes [3]. For example, if z is partitioned into n[z]

nonoverlapping fragments, and each of these fragments is replicated at rn[z]

nodes (rn[z] < n[x]), then the total storage required is L. m[z]. However,

since each single node may only contain m[z] fragments, one may have to

access more than one node to reconstruct a complete copy of z. While im-

proving confidentiality is not the main objective of this concept: it does offer

better confidentiality than the full copy repLication. The exact measure of

confidentiality depends on the distribution of fragments among the nodes.

In order to reconstruct z, we need to access at most n[z] - re[z] + 1 nodes.

This is also referred to as full copy equivalent of x, or fce[z] [3]. Thus,

assuming a read-one/write-all replica control, accessing any fce[z] nodes

5

will enablereadoperationson z. Thus, the reduction in storage is achieved

at the increased cost of communication for read operations. The read and

write resiliencies offered by this concept depends on the replica control pol-

icy. For example, with a read-one/write-all policy, the read resiliency is

n[x] - fce[z] or mix] - 1, and the write resiliency is zero. If we employ the

quorum consensus concept, then the read resiliency is n[x] - qr[z] and the

write resiliency is nix]- q_[x] where qr[x] and qw[x] are constrained by the

following:

/ceil] < q_[_]< _[_]

max(fce[z],[(n[z]+ 1)/21) < q_[_] < _[_]

n[x]+ fce[x] <_q_[x]+ q_[x] <_2. n[x]

(4)

(3)

(6)

(_)

Thus, with the quorum concensus concept, the fragmentation concept has

achieved lower data storage at increased lower limit on q_[x]. This implies

lower read resiliency and higher communication cost for read operations.

2.3 Data Encoding and Decoding

Even though fragmentation technique has reduced the data storage require-

ment of a replicated system, it is still considerably higher than a single copy

system. In addition, the confidentiality offered by this scheme is not di-

rectly controlled by the number of fragments. Instead it depends on the

actual distribution of fragment copies among the nodes.

The data encoding and decoding concept is a scheme to directly control

the confidentiality of a data object and achieve it at a substantially low

storage overhead. One such scheme is suggested by R_bin [12]. Here, the

object z which is a sequence of L characters, bl,b2 ,bL, is segmented

into sequences of length p. (IfL is not a multiple of p, then x can be

padded with nullcharactersto make ita mu|tipleof p). Denoting the ith

segment of z as si,z = sl,s2,•..,S(L/p). These segments are now coded

into n vectors fl, f2,..., fn where fl = ai • sl, a, • s2,..., a, • S(L/p). Here,

• denotes the vector dot product and ai is a vector of length p. The n

vectors, al, a2,.., an are chosen such that every subset of p different vectors

are linearly independent, ltabin [12] describes a simple method to derive

these vectors. The n coded vectors fl,f2,...,fn are distributed to n nodes

in the system. This completes the encoding procedure.

In order to reconstruct or decode x, we need to access p coded vectors

from p nodes. Suppose vectors fl, f: , fp are accessed for the reconstruc-

tion. If we denote fi =cil, ci2,..., Ci(L/p), and let A be a p x p matrix such

that ith row of A is a,, then the original segment si of z call be obtained by

a matrix multiplication operation as follows: si = A -l • [cl,,c_i,...,%,]T.

Since z = sl,s2,...,S(L/p), we have reconstructed the object z by decoding

the p vectors.

Since each of the n coded vectors is L/p characters in size, the total

storage required is L. n/p. In addition, we need to store the a vectors

requiring an additional n 2 storage. Since L > > n, we ignore this component.

By a proper choice of p, the total storage can be considerably reduced.

Looking at the confidentiality, since the information in z cannot be decoded

without accessing p nodes, this scheme offers a confidentiality of p.

If we assume a read-one/write-all policy, then a read operation on x re-

quires to access p nodes. In addition, it involves 2. L.p arithmetic operations

for reconstruction of z. For large data objects, this may be a significant cost•

7

A write operationshouldupdate the coded vectors at all the n nodes. In

addition, depending on the type of changes, it may involve up to 2 • L • n

arithmetic operations for encoding. Also, the read resiliency is n - p and

write resiliency is zero.

The write resiliency can be considerably improved by employing the

quorum consensus concept [2]. Here, the read and write quorums must

satisfy the following requirements:

max (p, + _< _<
n[z] + p <_ qr[z] + qua[z] <_ 2. n[z] /10)

With the quorum consensus, the read resiliency is increased to n[z] - qr[z],

the write resiliency to n[x] - qw[z], and the confidentiality remains at p as

before.

2.4 Log-based Information Propagation

In much of the earlier discussions, we assumed explicit read/write requests

flowing between nodes using explicit message passing. Here, higher values

of read and write quorums implies increased number of messages to execute

read and write operations respectively. Wuu and Bernstein [15] proposed

an efficient log-based propagation mechanism in which the only means of

node-to-node communication is through the propagation of logs. Agrawal

and El Abbadi adopted this scheme for replicated databases [2]. When a

node intends to execute a read operation on x, it writes r[z]-event into its

log. Each tog, and hence the read-event, ultimately reaches other sites.

When a site learns of r[z]-event and decides to be in the quorum, it writes

ok(r[z])-event into its log along with the version number and the value of z.

8

Whenthe original site learns of the required majority of ok(r[z])-events, by

reading the logs from other sites, it determines the latest value of z. The

read operation is now complete.

In the case of a write operation, the node intending to execute the op-

eration requests for version numbers of z by writing v[x]-event in its log

which is ultimately propagated to others. When a node reads this request

and decides to participate in the quorum, it writes its version number and

the value of z in its log along with ok-event. When the original node learns

of the majority of ok-events, it updates the value and writes w[z]-event in

its log.

As a consequence of employing this propagation technique along with

the data fragmentation technique, (7) can be relaxed as follows [3]:

+ 1 < + < 2. (11)

Similarly, when this technique is combined with the data encoding scheme,

(10) can be relaxed as follows [2]:

n[x] + 1 <_q_[x] ÷ qw[x] <_ 2. n[z] (12)

Thus, the log-based propagation has improved the read and write resiliencies

when integrated with the data fragmentation and data encoding schemes.

3 An Integrated Approach

While each of the above mentioned concepts have certain benefits, these

are aA:hieved at the expense of additional processing cost, storage cost, or

restrictions on read and write availabilities. Some of these restrictions may

be overcome through a proper integration of these techniques. Before we

presentour integratedapproach,weillustrate its needthroughthefollowing

examples.In eachof theseexamples,giventhesystemrequirements,wehave

to suggestan appropriatedata managementscheme.Here,for simplicity,

weexpressthe resiliencyin termsof readandwrite quorums(q_,q_).

Example 1: Requirements: Number of nodes = 10; Storage _< 5.L; confi-

dentiality >_ 4; resiliency: q, _< 4, qw _< 8.

Suppose we apply the fragmentation technique [3] along with the log-

based propagation [15] and the quorum consensus [7], then z can be par-

titioned into ten fragments, each of which can be replicated at five or less

sites (due to the storage constraint). Hence, fce >_ 6 (4) and q_ >_ 6 (5).

Clearly, this is an unacceptable solution since it does not satisfy the read

resiliency requirement.

Suppose we apply the data encoding scheme with log-based propagation

[15] and quorum consensus [2], then the storage constraint restricts p to

be 2 _< p _< 10. Since we need a confidentiality of at least 4, p is further

constrained as 4 _< p _< 10. Accordingly, 4 _< q_ _< 10 (8). To satis_' the read

resiliency requirement, we choose p = 4 and q, = 4. Hence, 7 _< q_ _< 10

((9) and (12)). Thus, using the data encoding method we are able to obtain

a data management scheme which satisfies all the design requirements.

Example 2: Requirements: Number of nodes = 10; Storage _< 6 • L; con-

fidentiMity _> 3; resiliency: q, < 5, q,_ < 7; processing cost: arithmetic

operations per read _< 4 • L.

Applying the fragmentation technique with log-based propagation and

quorum consensus, we find m _< 6 (storage constraint), and hence fce >__5.

10

Accordingly,qr _> 5 (5). To satisfy the read resiliency requirement, let

fce = qr = 5. Also, 6 < qw _< 10 ((6) and (11)). Since qr = 5, it is possible

to distribute the fragment copies among nodes so that the confidentiality

requirement of z is met. Hence, this solution is acceptable.

If we apply the data encoding scheme along with the log-based propaga-

tion and quorum consensus, the storage constraint restricts p as 2 _< p < 10.

With a confidenta_ility of three, p should be at least 3. Hence, 3 _< p _< 10.

However, this implies that each read operation involves at least 6 • L arith-

metic operations. This is unacceptable.

Example 3: Requirements: Number of nodes = 10; Storage _< 4 • L: Avail-

ability: q, < 4; processing cost: arithmetic operations per read _< 4 • L.

Applying the fragmentation technique with log-based propagation and

quorum consensus, we find m _< 4 (storage requirement), and hence fce >_ 7.

Accordingly, q, _> 7. This is an unacceptable solution.

Applying the data encoding scheme with log-based propagation and quo-

rum consensus, we find p _> 3 (storage requirement). However, this implies

that each read operation requires at least 6 • L arithmetic operations. This

is unacceptable.

As an alternate, suppose we first partition z into (say) ten fragments

(F1,F2,...,F1o) and apply the data encoding scheme on each fragment

with p = 2 and n = 4. Thus, each fragment Fi results in 4 vectors

(fi,1, f,a, fi,3, fi,4), any two of which are sufficient to reconstruct it. In ad-

dition, if we make two copies of each vector, then we have 8 vector copies

per fragment (c_,1,1, c_,1,2, ..., ci,4.1, ci,4.2). In total, we will have 80 coded

vectors to be distributed among 10 nodes (or 8 per node). The storage cost

11

1 2
C1,1,1 Cl .2,1

C2,1,1

C3,4,2

C4,3,2 C4,4.2

C5.2,2 C5.3,2

C6,1,2 (7-6,2,2

C7,1,2

C8,4,1

C9,3,1 C9,4,1

C10,2.1 C]0,3.1

Nodes

3 4 5 6 7 8 9 10

C1,3,1 Cl,4,1 C1.1,2 C1,2,2 Cl,3,2 Cl,4,2

C2,2,1 C2,3,1 C2,4,1 C2,] ,2 C2,2,2 C2,3,2 C2,4,2

C3,1,1 C3,2,1 C3,3,1 C3,4,1 C3,1,2 C3.2,2 C3,3,2

C4,1,1 C4,2.1 C4,3,1 C4,4,1 C4,1,2 C4,2,2

C5,4,2 CS,1,1 C5,2,1 C5,3,1 C5,4,] CS,1.2

C6,3,2 C6,4,2 C6,1,1 C6,2,1 C6,3,1 C6,4,1

C7,2,2 C7,3,2 C7,4,2 C7,1,1 C?,2,1 C7,3,1 C7,4,1

C8,1,2 C8,2,2 C8,3,2 ¢8,4,2 CS,l,1 C8,2,1 C8,3,1

C9,1,2 C9,2,2 C9,3,2 C9,4,2 C9,1.] C9,2,1

C10,4,1 CIO,1,2 C10,2,2 C10,3,2 ¢10,4,2 C10,1.1

Table 1: Vector distribution for Example 3

is (4/2)'2"L or 4. L. To read z, we need to reconstruct all ten fragments.

Assuming that both the replicated copies of a vector are updated by a write,

we should access 20 vectors to reconstruct z. This imp].ies that we should

access at least three nodes. By distributing the vectors in a cyclical fashion,

as shown in Fig. 1, it can be seen that accessing any four nodes is sufficient

to reconstruct z in a read operation. Thus, q_ >__4. We choose q_ = 4. Also,

since p = 2 the arithmetic operations required for read operation on z are

4.L.

This example illustrates the need for combining the data fragmentation

and decoding techniques in the allocation of z among the nodes in a dis-

tributed database system.

4 Proposed methodology

The examples in the previous section indicate that data fragmentation and

data encoding are not mutually exclusive alternates. In fact, these should be

used as complimentary concepts. Here, we describe an out].ine of a method-

12

i

ology to integrate these concepts.

Problem: Given the storage, security, processing, and resiliency require-

ments on a data object z_ determine a data allocation and processing scheme.

Step 1. Ignoring the processing cost constraints, determine a value of p (in the

data encoding scheme) so as to satisfy the confidentiality and resiliency

requirements in (8), (9), and (12). (If the log-based propagation is

inappropriate, use (10)instead of (12).)

• If no such value ofp can be found, then conclude that the concepts

considered in this paper are inadequate to solve the problem.

• Otherwise, using p, determine the processing overhead associ-

ated with read and write operations in data encoding and de-

coding. If the processing requirements are met, then the desired

solution is obtained by using data encoding, quorum consensus,

and log-based propagation (if necessary) with the specified p and

read/write quorums. Otherwise, go to Step 2.

Step 2. To determine the suitability of data fragmentation as a means to re-

duce l_rocessing cost, determine the value of m so as to satisfy the re-

siliency and confidentiality constraints while keeping the storage over-

head within limits ((4)-(7)). The storage overhead, in this case, is

given by m •/, plus any storage needed for storing logs if log-based

propagation is used. Since the processing overhead in the reconstruc-

tion and updation of z is minimal, it can be ignored.

• If no such value of m can be found, then conclude that data

fragmentation with quorum consensus and log-based propagation
J

13

(if (11) is used instead of (7) for q_) are insufficient to solve the

problem and go to Step 3.

• Otherwise, the solution is obtained with replication specified by

m and quorums specified by (4)-(7) (or (11) if log-based propa-

gation is used). Since, in this case, confidentiality depends on the

actual distribution of copies among the nodes, and since optimal

allocation is an NP-hard problem, employ a heuristic algorithm

to determine the allocation and the associated confidentiality. If

no such distribution is found, go to Step 3.

Step 3. Here, we find both the storage and processing constraints to be signif-

icantly severe to obtain a solution using either data encoding or data

fragmentation. In this step, we employ both of them simultaneoulsly.

For simplicity, assume that x is partitioned to n fragments, where n

is the number of nodes in the system. We need to choose values for

• p, n': the encoding parameters. Each fragment is encoded into n'

vectors (n' <: n) so that any p are sufficient to reconstruct it. The

read and write quorums for a fragment are dictated by (8)-(10).

(Use (12) if log-based propagation is used.)

• m: number of copies of each coded vector of a fragment.

• Distribution of vector copies among the nodes-in the system.

Here, the storage requirement of the coded vectors is given by m.

n'/p. L. The processing requirement for reconstruction (or read) is

given by 2 .p.b. The offered resiliency and confidentiality now depend

on the distribution of vector copies. If no single node has access to

more than one vector of a given fragment, then the confidentiality of a

14

singlefragmentis p. However, the confidentiality of z could be much

higher. Similarly, even though the minimum values of q_ and q_ are

dictated by (8)-(10), these could be higher for z, and depend on the

distribution. In general,

Step 3a. Determine values of p, n _, and rn so as to satisfy the storage and

processing requirements.

Step 3b. Determine a distribution scheme satisfying the resiliency and con-

fidentiality requirements. Since data distribution, in general, is

a NP-hard problem, employ heuristic schemes such as symmetric

or cyclic distributions.

Step 3c. If Step 3b cannot find a solution, choose alternate values for the

parameters and repeat Step 3b.

Due to the heuristic nature of the distribution algorithm, a solution

may not be found even if it actualJy exists. Handling these problems

is beyond the scope of this paper.

5 Conclusion

The main objective of this paper is to illustrate the need for integration of

tools in database design. In particular, this paper dealt with the problem

of data allocation in distributed systems using data f_agmentation, data

encoding, partial replication, and quorum consensus as basic techniques.

While several papers in literature have described the efficacy of each of these

techniques, in this paper we made an attempt to integrate them. First, we

have illustrated the need for integration, and then outlined a procedure for

integration. Future work should concentrate on optimizing the procedure.

15

ACKNOWLEDGEMENT

The author would like to thank the anonymous referees for their careful

reading of the manuscript and for their comments. This work is supported

in part by a grant from NASA Langley Research Center, NAG-l-Ill4.

References

[1]

[2]

[3]

[4]

[5]

[6]

A. E1 Abbadi and S. Toueg, "Maintaining availability in partitioned

replicated databases," A CM Trans. Database Systems, vol. 14, no. 2,

pp. 264-290, June 1989.

D. Agrawal and A. E1 Abbadi, "Integrating security with fault-tolerant

distributed databases," Computer Journal, vol. 33, no. 1, pp. 71-78,

February 1990.

D. Agrawai and A. E1 Abbadi, "Storage efficient replicated databases,"

IEEE Trans. Knowledge and Data Eng., vol. 2, no. 3, pp. 342-352,

September 1990.

S. Y. Cheung, M. Ahamad, and M. H. Ammar, "Optimizing vote and

quorum assignments for reading and writing repficated data," IEEE

Trans. Knowledge and Data Engineering, vol. 1, no. 3, pp. 387-397,

September 1989,

D. E. Denning, Cryptography and Data Security, Addison-Wesley,

Reading, MA, 1982.

H. Garcia-Molina and D. Barbara, "How to assign votes in a distributed

system," J. ACM, vol. 32, no. 4, pp. 841-860, Oct. 1985.

[7] D.K. Gifford, "Weightedvoting for replicateddata," in Proc. Seventh

Syrup. Oper. Syst. Principles, Dec. 1979, pp. 150-159.

[8] S. Jajodia and D. Mutchler, "Dynamic voting algorithms for maintain-

ing the consistency of a replicated database," A CM Trans. on Database

Systems, vol. 15, no. 2, pp. 230-280, June 1990.

[9] T.F. Lunt, D.E. Denning, R. R. Schell, M. Heckman, and W. R. Shock-

le.v, "The SeaView security model," IEEE Trans. Software Engineering,

vol. 16, pp. 593-607, June 1990.

[10] J.-F. Paris, "Voting with witnesses: A consistency scheme for replicated

files," in Proc. 6th Conf. Dist. Comp. Syst., June 1986, pp. 606-612.

[11] J.-F. Pa2is and D. E. Long, "Efficient dynamic voting algorithms," in

Proc. Fourth IEEE Intl. Conf. on Data Engineering, Feb. 1988, pp.

268-275.

[12] hi. O. Rabin, "Efficient dispersal of information for security, load bal-

ancing, and fault tolerance," J. ACM, vol. 36, no. 2, pp. 335-348, April

1989.

[13] B. Randell and J. Dobson, "Reliability and security issues in distributed

computing systems," in Proc. Fifth Syrup. on Reliability in Distributed

Software and Database Systems, 1986, pp. 11:3-118.

[14] R. H. Thomas, "A majority consensus approach to concurrency control

for multiple copy databases," ACM Trans. Database Syst., vol. 4, no.

2, pp. 180-209, June 1979.

[15] G. T. J. Wuu and A. J. Bernstein,"Efficient solutionsto the repli-

catedlog and dictionary problems,"in Proc. 3rd Symp.Principlesof

Distributed Computing, 1984, pp. 233-242.

18

Order StatisticsBased Modeling of

Gracefully Degrading Computing Systems

J

N. R. Chaganty and R. Mukkamala

Old Dominion University, Norfolk, Virginia 23529-0162, USA.

Key Words-- Fault-tolerance, Failure Rate, Graceful degradation, Hardware redundancy, Mean com-

putations before f_lure, Mean time to f_dlure,Order statistics,Reliability.

Abstract

Much of the existing work on gracefully degrading computing sys-

tems are only applicable when the life distribution for the system com-

ponents is exponential. In this paper, we develop an order.statistics

based model for these systems. We show the generality of this model

by deriving expressions for system reliability, mean-time-to-failure,

and mean-computations-before-failure. In addition, we derive some

interesting properties for the failure rate of such a system . In par-

ticular we. show that the failure rate of a gracefully degrading system

with i.i.d. DFR components is also DFR if the coverage probability is

less than 1/2. This generalizes a well known result for series systems.

1 INTRODUCTION

With the advances in VLSI technology, it is now possible to build systems

with replicated components at almost no additional cost. For example, it is

possible to obtain a computing system with replicated processors (or multi-

processors), replicated memory modules, or redundant interconnections [8].

Depending on the application, component redundancies may be used to im-

prove the response time of the system (through parallelization), to improve

the fault-tolerance (or reliability) of the system, or both. Among these, the

third type, generally referred to as gracefully degrading systems, are more

attractive since they combine the efficiencies due to parallelism with the

fault-tolerance properties of standby-redundant systems [3, 9]. In addition

to increased hardware reliability, redundant hardware components may be

also used to enhance software reliability with schemes such as triple-modular

redundancy and N-version programming [1, 5].

Even though the reliability of individual components in a system is con-

siderably high, due to technological advances in design and manufacturing,

the extremely high number of components in a system may result in sig-

nificantly low system reliability. In addition, with the increase in need for

ultra-reliable systems, such as in space applications, the study of system re-

liability has become important. In this context, we look at the performance

of gracefully degrading systems.

Gracefully degrading systems are a class that include the series and par-

allel systems at the extremes. These systems may use all redundant com-

ponents to execute tasks, i.e., all failure-free components are active. When

a component failure is detected, these systems attempt to reconfigure to a

2

system with one fewer components. These systemscan be representedas

falling somewherebetween the extremesof ultra-reliable systemsand high

performanceparallel systemsin terms of the trade-off between performance

and reliability gained by the use of redundancy [3, 9].

Much of the existing studies on gracefully degrading systems concentrate

on the evaluation of performance metrics such as response time (e.g., time

of task completion) and reliability (e.g., probability of task completion). For

example, Borgerson and Freitas introduced a model for analyzing the reliabil-

ity of these systems [4]; Beaudry has analyzed and studied the performance

characteristics of these system using Markov model and demonstrated that

the gracefully degrading systems have a higher probability of executing a

long computing mission than the corresponding standby redundant systems

[3]; further evaluation of gracefully degrading systems from the viewpoint of

generalized reliability measures has been done by Osaki [9]; and Koren et al

derive expressions for the performance of a gracefully degrading multipro-

cessor system with multistage interconnection system [8]. Much of this work

concentrates on investigating the average behavior of the system such as the

average reliability or the average time for task completion assuming expo-

nential life distributions for system components. For example, Beaudry's

method of Markov chains is valid only under exponential life distributions,

and is inapplicable for general distributions. These observations are also

valid with other previous work mentioned above. In this paper we present

a fairly general model for gracefully degrading systemsthrough the useof

order statistics [7] and show how one can derive various reliability measures

for systems consisting of components with arbitrary life distributions.

There is considerable amount of literature in the theory of reliability that

is devoted to studying the behavior of the failure rate of systems [2, 11].

Specifically, several studies dealt with relating the failure rate behavior of a

system to the failure rate behavior of its components. For example, a classic

result states that a series system of n independent and identically distributed

(i.i.d.) components has decreasing failure rate (DFR) if the components

possess DFR property. Similarly, a parallel system of n i.i.d, components

is shown to have an increasing failure rate (IFR) if the components possess

IFR property [10, 11]. The concepts of failure rate and IFR, DFR are defined

precisely in Section 4. In this paper, we derive some important properties

for the failure rate of the gracefully degrading systems.

This paper is organized as follows. In section 2 we describe the order-

statistics based model of the gracefully degrading systems. Derivations for

the three chosen metrics is described in Section 3. Section 4 contains the

results on failure rate properties. Finally, Section 5 has some concluding

remarks.

2 Order-statistics based Model

fully Degrading System

of a Grace-

Gracefully degrading systems are a class that include the series and parallel

systems at the extremes. These systems use all components to execute tasks,

i.e., all failure-free components are active. The model for the gracefully

degrading computing system can be described as follows [9]:

1. The system has n i.i.d, components.

2. The life length of each unit has an arbitrary Cdf, F(_) and Pdf f(t).

3. A system is in state i when there are i failed components,

0<i<(n-1).

4. ci is the coverage probability when a system is in state i - 1,

l<i<(n-1).

5. TO), T(2),..., T(,,) are the n-order statistics of the life lengths.

6. T is the life time of the system.

Initially the system starts out with all n components working and the

state of the system is taken to be 0. When the component failure is detected

at time TO) , the system reconfigures itself to a system with (n-1) components

with probability cl and fails with probability 1 - cl. The state of the system

is now 1. In general when the system is in state (i - 1) and the ith failure

5

occursat time T(;), the system reconfigures itself and starts working in state i

with probability ca and fails with probability (1-ca). Under these conditions,

the life time distribution of a gracefully degrading system may be expressed

in terms of the component life times and coverage probabilities as

T(1) with probability 1 -cl

TI2) with probability c1(1 - c2)

T = : : (1)

T(,_I) with probability c_c:.., c,__2(1 - c,,_1)

T(,_) with probability clc2.. •c_-1

The coverage probability c, indicates the probability with which the sys-

tem can reconfigure when the ith failure has occurred. For example, in the

case where ci = 0, 1 _< i _< (n - 1), the gracefully degrading system corre-

sponds to a series system and ci = 1 for all 1 < i < (n - 1) corresponds to a

parallel system of n i.i.d, components.

3 Evaluation of Performance Metrics

In this section, we use the order statistics model to derive expressions for

three important performance metrics in fault-tolerant computing: system re-

liability, the mean-time-to-failure, and the mean computation before failure.

The reliability of a system, R(t), is defined as the probability with which

the system is operable at least until time t. In other words, -R(t)=Pr[tF >

tlinitial system state], where tF is the time of system failure. Using this

definition, and the order statistics model described above, the reliability of

6

a gracefully degradingsystem can be computed as

= (1 - c,)P(T(1) > _)+ c1(1- c=)P(Tc=I > t) + ... + cac=...¢,_,P(T(, I > _)

= P(T(1) > t) + clP(T(a) < t < T(=)) + ... + c,c,...c__xP(T(_,__) < t < T(,_))

(2)

Let iv(t) = 1 - F(t) be the survival function of a single component, then we

can easily see that

P(T(k)<t< T(k+_)) = (k)[F(t)]k [T(t)]

TI--]¢ "

Hence,

(3)

R(t) = _ c; IF(t)] k F(t) (4)
k=O

where Co = 1.

In the case where ca = c2 = ... = c_

()

= c, we get

= E [T(t
k=O

= [cF(t)+ F(t)]" -[cF(t)]" (_)

which agrees with Osaki's result [9].

Let us now consider a second important performance metric for a grace-

fully degrading computing system: the mean time to failure or MTTF. By

definition it represents expected life of a system before it fails. From the def-

inition of the life time of the system (T) in the order statistics model and the

abovedefinition, MTTF for a gracefully degradingcomputing system may

be expressed as:

MTTF = (1 - c,)E(T(1)) + c,(1 -c2)E(T(2))+ ... + c, c2...c__lE(T(,_))

= E(D1) + c,E(D_) + c,c_E(D2) +... + c, c2...__,E(D,,) (6)

where Tco } = 0 and Dk = Tik) - T(k-1) is known as the spacing between the

(k - 1)th failure and the kth failure. If cl - c2 = ... - _-1 = c, then

MTTF = _ ckE(Dk+,) (7)
k=O

It should be noted here that several results on order statistics currently exist

in literature [7]. One could use these results to compute R(t) and MTTF

for arbitrary component life distributions.

If the life distribution of each component is exponential with parameter

A, then E(Dk) = 1 Hence,
A(rt-k+l) "

1 n-1 ck

MTTF = _ _= (n-k) (S)

This agrees with Osaki's result [9].

We now consider an important performance metric relevant to comput-

ing systems which are likely to execute jobs that can store (and later re-

trieve) the intermediate results obtained by a task prior to the system failure.

Database applications which store the state of a database system at inter-

mediate points, known as checkpoints, are an example of such jobs [6]. This

procedure is also common among tasks that have long computation times.

In such cases,when a system restarts after a failure, it restoresthe system

(or task) state to the one indicated by the last checkpoint, and continues

execution from that point. In this context, computing the expectedprogress

betweenfailures or meancomputationsbefore failure (MCBF) will enable us

to compute the total time required to complete a given task. We now derive

an expressionfor MCBF using the order statistics model.

Since we are dealing with a gracefully degrading computing system, it

is important to recognizethe fact that different states of the system have

different computational capabilities. For example,a state with n components

is faster than a state with n- 1 components, and so on. If state i corresponds

to i failed components and n - i active components, then we let a,__i be the

computation capacity of the system in state i, 0 < i < (n- 1). If the system

starts in state 0, then using (1), we get the following expression for mean

computation before failure (MCBF):

MCBF
-- (1 - c,)_,_E(T(,)) + c,(1 - c2) (_T(,)÷ c__,E(T(2)- T(,))) +...

+c, c2 ...cn_, (_,_E(T¢,)) + c_,__,E(Tt2 t - T(,)) +... + a,E(T(,_) - T(,__,I))

= a,_E(D1) + cla,__,E(D2) + c_c2a,__2E(D2) +... + clc2...__laiE(O,_)

n-l_._ (Nk-1)
k=O

where Dk = T(k) - T(_-I) and Co = 1.

Again, if the life distribution of the components is exponential with pa-

rameter A, then Dk has an exponential distribution with parameter (n - k +
J

9

1)A. Hence,

MCBF -- ci
"- "_ k=o \i=o n -- k

(10)

Ifa_=a.iandc_ =c2=...=c, then

MCBF

n-I

=

a(1 -c")

A(1 -c)
(11)

All the expressions for reliability measures that we derived for the expo-

nential life distributions match with Beaudry's results [3].

4 Some Properties of the Failure Rate

As mentioned in the introduction, the failure rate of a system is an impor-

tant fault-tolerant property of a system. For this reason, several theories

expressing the failure rate of a system in terms of the component failure

rates currently exist in literature. However, this metric has not yet attracted

the attention of researchers dealing with gracefully degrading computing sys-

tems. We attempt to elicit such interest through this paper.

Since the life distribution function of a component has an arbitrary Cdf

F(t) and Pdf f(t), then the failure rate of the component at time t is defined

as r(t) = f(t)/-F(t)[7]. The function fit)represents the probability intensity

with which a component that is t-time units old will fail. Similarly the failure

rate of the system at time t is defined as r'(t) = g(t)l-R(t), where g(t) is the

10

Pdf of the life of the system and _(t) is the reliability of the system. We

say the component (system) has IFR (increasing failure rate) property if r(t)

(r'(t)) is increasing with t and DFR (decreasing failure rate) property if r(t)

(r'(t)) is decreasing in t.

In general, for arbitrary cl's there may not be any monotonic property

(IFR or DFR) for the failure rate of a gracefully degrading system. However,

in this section, we state and prove some monotonic properties of the failure

rate of gracefully degrading systems in the special case where c_ = c for all

l<i<(n-1).

Using the above definitions of r(t) and r'(t) and the order statistics based

model described in Section 2, we can express the system failure rate of a

gracefully degrading system as:

r'(t) = nr(t)h(p,) (12)

where

cP(t)
P'= [cF(t)+

h(p) = (1-p)(1-c+cp'_-') (14)
1 - p'_

It is interesting to note that we are able to express the failure rate of the

system in terms of the failure rate of a component. The function h(pt) plays

11

a very important role in studying the failure rate of the system. Note that pt

is an increasing function of t >_ 0 and takes values between 0 and 1. Thus we

only need to study the behavior of the function h(p) for values of p between

0 and 1. Because of its practical importance, we state below as Proposition

1, the failure rate characteristics of a two component gracefully degrading

system.

Proposition 1. For a gracefully degrading system of 2 components the

following properties hold:

(a) If c < ½, then r(t)is DFR implies r'(t)is DFR.

then r'(t) is identically equal to r(t).(b) If c - 7,

(c) If c > ½, then r(t) is IFR implies r'(t) is IFR.

Proofi Substituting n = 2 and taking derivative of h(p) in (14), we get

2c- 1

h'(p) - (1 +p)2 (15)

Therefore we can conclude that h(p) is decreasing for c < 1/2, h(p) is

constant for c = 1/2, and h(p) is increasing when c > 1/2. Since pt is an

increasing function of t, the result now follows from (12). •

Proposition 2. For a gracefully degrading system of n components the

following properties hold:

12

(a) If c < 1_ _, then r(t) is DFR implies r'(t) is DFR.

(b) If c > ½, then r(t) is DFR does not imply that r'(t) is DFR.

Proof: From (12), we can see that it suffices to show that h(p) is decreasing

for c < _1and for all n _> 1. Taking derivative with respect to p in 14) and

using the fact that c _< 1/2 we get

-Q(_)
h'(p) <

2(1 -p_)_

where

=(1- -(n -

We can easily verify that Q(n) > 0 for 0 _(p _ 1 using induction argu-

i and n 9 asment. Therefore h'(p) < 0 and this proves (a). When c > 7, = -

shown in Proposition 1, the function h(p) is increasing in p. Thus we cannot

say that r'(t) is DFR even if r(t) is DFR. •

From Proposition 2 we can conclude that a series system (c = 0) of n

i.i.d. DFR components is also DFR. The failure rate characteristics of a

parallel system (c = 1) are stated in the next proposition. Although this is

a well known result [11], we have included this proposition for the sake of

completeness. Also, our proof is quite different from other known proofs.

Proposition 3. Consider a gracefully degrading system of n components.

If c = 1 then the following properties hold:

13

(a) r(t) is IFR implies r'(t) is IFR.

(b) r(t) is DFR does not imply that r'(t) is DFR.

Proof: In the case c = 1 the derivative of the function h(p) is given by

pn-2[n(1-p)-(1-p")]

h'(p) = (1 _ pn) 2 (16)

Using induction argument we can show that h'(p) > 0 for all n > 1. This

proves (a). Note that even if r(t) is constant (hence DFR), r'(_) will be

increasing in t since h(pt) is increasing in t. This shows (b). •

4.1 The Exponential Case

Since the exponential distribution is widely used to model the life distribu-

tions of electronic components and computer modules, it is only appropriate

to discuss the behavior of the failure rate of a gracefully degrading system

with exponential components in further detail. Let us assume that the sys-

tem is composed of components which have exponentially distributed failure

times with mean failure time equal to 1/,_. Since r(t) = _, using (12) we can

rewrite the failure rate of the system as

r'(t) = nAh(p,) (17)

where pt and h(p,) are as defined by (13) and (14). It is clear from (17) that

the behavior of v'(t) is completely determined by the function h(pt). The

14

graph of h(p_) as a function of F(t) for different values of c is shown in Figure

1. Note that h(p,)- 1-cat t = 0and converges to 1In as t---, o_. Also,

h(pt) is decreasing in t for small values of c and increasing t for large values

of c, as demonstrated in Proposition 2. The graph of h(pt) as a function

of the coverage probability c for different values of F(t) is shown in Figure

2. It clearly shows that at any point of time the failure rate is high for low

coverage probability and vice versa, as we expect. Also the failure rate is a

monotone decreasing function of the coverage probability.

5 Conclusion

In this paper, we have developed an order statistics based model to represent

the fault-tolerant characteristics of a gracefully degrading computing system.

This model has the advantage of being quite general and is usable under any

arbitrary life time distribution assumptions for the components of a system.

In addition, employing this model facilitates the use of several existing results

in the area of order statistics. Using the proposed model, we have derived

expressions for three performance metrics for gracefully degrading computing

systems. These are verified with other results in literature for a special case

of exponential life distributions for components. In addition, we have also

stated and derived some properties related to the failure rate of the gracefully

degrading systems. In particular, we have shown that the failure rate of a

gracefully degrading system with i.i.d. DFR components is also DFR if the

15

coverageprobability is less than 1/2. The three propositions stated in this

paper generalizea number of already known results for seriesand parallel

systems.

6 Acknowledgment

The first author's research was partially supported by the U.S. Army Re-

search Office Grant number DAAL03-90-G-0103. The second author's re-

search was partially supported by NASA Langley Research Center under

grant NAG-l-Ill4. The United States Government is authorized to repro-

duce and distribute reprints for Governmental purposes notwithstanding any

copyright notation thereon.

References

[1] T. Anderson and P.A. Lee, Fault Tolerance, Principles and Practice,

Prentice-Hall (1981).

[2] R. E. Barlow and F. Proschan, Statistical Theory of Reliability and Life

Testing, Holt, Rinehart and Winston (1975).

[3] M. D. Beaudry, "Performance-related reliability measures for computing

systems," IEEE Trans. Computers, Vol C-27, p. 540-547 (1978).

J

16

[4] B. R. Borgerson and R. F. Freitas, "A Reliability Model for Gracefully

Degrading and Standby-Sparing Systems," IEEE Trans. Computers, Vol.

C-24, p. 517-525 (1975).

[5] L. Chen and A. Avizenis, "N-version programming: A fault-tolerance

approach to reliability of software operation," Proc. of FTCS-8, p. 67-80

(1978).

[6] C. J. Date, An Introduction to Database Systems, Vol L Addison Wesley

(1986).

[7] H. A. David, Order statistics, John Wiley (1981).

[8] I. Koren and Z. Koren, "On gracefully degrading multiprocessors with

multistage interconnection networks," IEEE Trans. Reliability, Vol. 38,

p. 82-89 (1989).

[9] S. Osaki, "Performance/reliability measures for fault-tolerant computing

systems," IEEE Trans. Reliability, Vol. R-33, p. 268-271 (1984).

[10] F. J. Samaneigo, "On closure of the IFR class under formation of coher-

ent systems," IEEE Trans. Reliability, Vol. R-34, p. 69-72 (1985).

[11] K. S. Trivedi, Probability Statistics with Reliability, Queuing, and Com-

puter Science Applications, Prentice-Hall (1982).

17

1.0
Figure l.h(Pt) as a function of F(t)

,c=0.2
n=5

AC =0.4
+c = 0.7

0.8 .c = O. 9

I 0.6

h(Pt)

0.4

0.2

0.0
0 0.2 0.4 0.6 0.8 1.0

F(t)

Figure 2. h(Pt) as a function of c
1.0

0.8

n=5
, F(t) = O . 2

• F(t) = O. 4
• F(t) = O. 7
• F(t) = O. 9

0.6

0.4

0.2

0.0
0

18

DESIGN AND ANALYSIS OF DISTRIBUTED

REAL-TIME ALGORITHMS

Yinghong Kuang

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

June 29, 1992

1 Introduction

A distributed system is a system with a number of processing elements and

storage devices, connected together by a communication network [30]. Poten-

tially, this makes a distributed system more powerful than a conventional,

centralized one in two ways. First, it can be more reliable, because every

function can be replicated several times. Second, a distributed system can

do more work in the same amount of time, because many computations can

be carried out in parallel. These two properties, fault tolerance and par-

allelism, give a distributed system the potential to be much more powerful

than a centralized one.

The good features of the distributed systems also raise some problems.

In distributed systems, generally there is no centralized unit in charge of

the consistency control, since with this centralized unit we will lose the fault

tolerance feature. The consistency control of distributed systems includes

issues such as mutual exclusion, concurrency control, and replica control are

well studied in literature [35, 40, 20, 29, 14, 15, 19, 25, 33, 3, 16]. The

efficiency of these algorithms is generally measured in terms of the offered

availability, the number of messages per request, the response time, and the

throughput.

Real-time applications are those applications with strict requirements on

the timing behavior of the system. The system that support the execution

of real-time applications ensuring that the timing requirements are met are

often referred to as real-time systems. Task scheduling is a vital component

of real-time systems. Accordingly, this is a widely researched area resulting

in real-time schedulers [49, 44, 28].

Due to the potential for parallelism and fault-tolerance in distributed

systems, they are increasingly the preferred architectures for real-time sys-

tems. Here, by real-time distributed systemswe mean thosesystems that

consist of severaldispersedconcurrentprocessesthat communicatewith one

another by exchangingmessagesand may have complex and time-critical

interactions [5]. The complex interactions include sharing tasks amongthe

nodesof a network, schedulingof tasks and maintaining consistencyamong

processes[48]. The tasks as well as messageshave timing constraints. In

real-time uniprocessorsystemsthe important activities are the deadlinesof

tasks,while in real-time distributed systemsthe important activities include

both the deadlinesof tasks and the deadlinesof messages.

The existing approachesto distributed real-timesystemsincludeenhance-

ments to operating systems [23, 28, 47], communication systems[12, 1] as
well as distribution of subtasksaccording to resourceallocation and fault

tolerancerequirement [24, 10,49, 32,47, 24]. While somestudiesstart from

the centralizedimplementationof real-timesystemsand attempt to introduce

the distributed processingaspectsin to the systems,othersarestarting from

the generaldistributed systemsand attempt to considerreal-time systemsas

a viable application. Here,we chosethe latter approach.

We proposeto study the consistencycontrol aspectsof distributed real-

time systems. In particular, we proposeto concentrateon the three issues

mentionedabove: mutual exclusion,concurrencycontrol and replica control.

Sincethe existing solutionsto theseissuesaremainly aimedat non-real time

systemswith emphasison throughput and availability rather than on time-

boundedresponses,the proposedwork will be useful in building distributed

real-time systems. To achievethis task, we will attempt to establish a re-

lationship betweentime boundedness,availability and concurrency in these

systems.This may alsorequire formalization of the semanticsof concurrent

real-time transaction executions. As a result of this study, we should be

able to analyze the consistencycontrol issuesand then proposealgorithms

2

to handle the requirementsof thesesystems.

Also, muchof the current work in real-time task schedulingassumescom-

plete knowledgeof the arriving tasks along with the exact times of task ar-

rivals and exact time of task execution. Obviously, this assumption is not

always valid. The impact of the inexact knowledgeon the performanceof a

systemisnot obvious. In this context, weproposeto investigatetheseeffects,

and if necessaryproposenew schedulingalgorithms to handle the practical
loads.

The evaluation criteria of distributed real-time systemswill be investi-

gated and the performanceof the new real-time consistencycontrol schemes

will beevaluatedagainst theseperformancecriteria.

This document is organizedas follows. Section 2 reviews the current

work donein the distributed systemand real-time system areas. In Section

3 weoutline the work that weproposeto do in distributed real-time systems.
Finally, Section4 hassomeconclusions.

2 Previous Work

In this section, we summarize some of the existing work dealing with consis-

tency control of distributed systems and scheduling in real-time systems.

2.1 Mutual Exclusion in Distributed Systems

The problem of mutual exclusion arises when several processes, operating

in parallel, compete for resources that cannot be shared and therefore con-

straints have to be applied to ensure that when one process is using such

a resource none of the others can gain access to it. There are numer-

ous solutions for the mutual exclusion problem in distributed systems(e.g.,

3

[22, 26, 34, 2, 29, 8, 7, 35, 39, 40]). These fall into one of the following two

categories: token based and non-token based.

In a token-based scheme, a logical token exists for each sharable resource.

The process or node currently holding the token is authorized to access the

corresponding resource in a mutually exclusive fashion. The simplest token-

based scheme assumes a logical ring of processes or nodes along which the

token is propagated. Several other complex token based schemes also exist

(e.g., [29, 8, 7]). Here we briefly summarize three such schemes.

Ye-In Chang et al have proposed two variants of token-based mutual

exclusion algorithms. In the first variant [7], they proposed an O(log N)

token-based mutual exclusion algorithm for distributed systems. Here, a

logical tree is maintained in a fully connected network, and the root is the last

site to get the token among the current requesting nodes when no message is

in transmission. When a node invokes mutual exclusion, it sends its request

to the node possibly holding the token. The request is continuously forwarded

until it arrives at the root. Therefore, the number of messages to get hold

of the token is proportional to the number of nodes on the path leading

to the root. To speed up the search for the token, the algorithm attempts

to reduce the height of the logical tree. The message complexity of the

algorithm is O(log N) in light traffic, where N is the number of nodes, and

is reduced to three in heavy traffic. Furthermore, the algorithm is modified

to be resilient to node failures and a recovery procedure is also presented to

restore a recovering site consistently into the system.

In the second one [8], a token-based mutual exclusion algorithm for dis-

tributed systems which is fault tolerant to communication link and site fail-

ures is presented. In the algorithm, the system topology is a graph such

that each site has more than one path to the site holding the token. The

algorithm is fault tolerant due to the fact that a site has alternative paths

4

to search for the token in case of communication link or site failures. Ev-

ery site communicates only with its neighboring sites and holds information

only about its neighbors. When a site invokes mutual exclusion, a request

message is sent along the path from the requesting site to the token-holding

site. The token is passed along the same path in reverse direction and as

it goes, the direction of the edges is reversed so that the path always leads

to the site holding the token. This algorithm is free of deadlock, starvation

and fault tolerant and has a recovery procedure to restore a recovering site

consistently into the system.

M. Mizuno et ai proposed a token based mutual exclusion algorithm which

uses data structures similar to coteries, called quorum agreements [29]. The

performance of the algorithm depends upon the quorum agreements used.

When a good quorum agreement is used, the overall performance of the

algorithm compares favorably with the performance of other mutual exclusion

algorithms.

In a non-token based system, mutual exclusion is achieved by message

communication between processes. These processes have only local variables,

and the only way they can exchange information with each other is through

explicit communication. There are several algorithms under this category

(e.g., [22, 26a 34, 2, 35, 39, 40]). Here we describe two efficient algorithms.

In [39], Mukesh Singhal states that to guarantee mutual exclusion, the

minimal connectivity needs to be maintained at all times so that when a

site enters into competition for the critical section (CS), it comes to know

of all the sites and only the sites which are concurrently competing for CS.

To be specific, there is a request graph for the whole system which records

the directions of mutual exclusion requests from sites. A directed edge from

Si to Sj denotes that whenever Si invokes mutual exclusion, it will request

permission from Sj. There should always exist a directed edge between every

pair of sites and the direction of edges is always towards the site which

executed CS later with the edge adding and deleting rules.

The message traffic generated by the algorithm per CS execution has

been analyzed. When the rate of CS request is low, (n - 1) messages are

exchanged per CS execution and when the rate of CS request is high, on the

average 3 * (n - 1)/2 messages are exchanged per CS execution.

Solutions to mutual exclusion problem are often vulnerable to site and

communication failures. Intersecting quorums can be used to provide fault-

tolerant solutions, but they usually incur high communication costs. Agrawal

and Abbadi present a new quorum-based algorithm which has low commu-

nication cost and can handle both types of failures [2]. Given a set of sites,

we can logically organize these sites to form a tree. A quorum can be con-

structed by selecting any path starting from the root and ending with any of

the leaves. If successful, this set of sites constitutes a quorum. If it fails to

find a path as a result of the failure of a site, then the algorithm must sub-

stitute for that site with two paths, both of which starting from the children

of this failed site and terminate with leaves. In this way, we can construct a

tree quorum. The tree quorums formed this way satisfy the intersection and

the minimality properties of coteries. In the best case when the system is free

from failure, only [log N] sites are necessary to form a tree quorum. In the

worst case [(N + 1)/2] sites are required to form a quorum. The algorithm

can tolerate the failure of up to N - [log N] specific sites and still form a

tree quorum.

This algorithm exhibits the useful property of graceful degradation, i.e.

as failures occur, and increase, the cost of forming a quorum may increase

and the probability of forming a quorum decreases. The penalty for fail-

ures closer to the root is more severe than the failures in the vicinity of

the leaves. The availability of an algorithm is defined as the probability of

forming a quorum successfully in that algorithm. Analysis results show that

the tree quorum algorithm can achieve comparable degree of availability as

the majority quorum algorithm but at substantially lower costs. In practice,

this algorithm can use a spanning tree in a network. A spanning tree with

a minimum radius is most appropriate for our algorithm and will result in

minimum sized quorums.

None of these algorithms are suitable for use in distributed real-time

systems due to lack of time guarantees. The extensions that may yield these

guarantees are not obvious. We propose to look at this aspect in the proposed

research.

2.2 Concurrency Control in Distributed Systems

In a typical distributed system, several transactions may be executing si-

multaneously. If interleaving of these transactions is not controlled, it could

result in incorrect execution of transactions, and thereby an inconsistent

database. This is the concurrency control problem.

To solve the concurrency control problem, concurrency control algorithms

are developed. Based on implementation mechanisms, concurrency control

algorithms may be classified as lock-based and timestamp-based. Similarly,

based on conflict handling mechanisms, they may be classified as conservative

and optimistic.

The basic idea of conservative locking is that whenever a transaction

wishes to access a data item, it should first obtain an appropriate lock. If

a transaction finds that a data item that it wishes to lock is already locked

by another transaction, it must wait until this lock is released. When a

transaction has obtained all the required locks, it proceeds with its execution.

In conservative timestamping, each transaction has a unique timestamp

and data items are timestamped each time they are accessed. A transaction's

w

request to write a data item is valid only if that data item was last read and

written by an older transaction. Similarly, A transaction's request to read

a data item is valid only if that data item was last written by an older

transaction. Transactions are aborted and restarted when an operation on a

particular item cannot be validated.

In optimistic concurrency control it is hoped that no conflicts of access will

occur. Transactions proceed until they are ready to commit, at which time

a validity check is made. If conflicts with earlier transactions are detected,

the transaction is aborted and must be restarted.

The performance of the above mentioned concurrency control schemes

depends on the scenario. For example, optimistic concurrency control will

outperform conservative schemes when the likelihood of conflict between two

transactions is low. But it will be inferior when the degree of conflicts on

accessing data items is high. The performance of these schemes under time-

bound conditions in real-time systems is not at all clear. In fact, we first

need to design algorithms that incorporate transaction timebounds into the

concurrency control algorithms.

In the context of priority-based systems, priority inversion is said to have

occurred when a higher priority task must wait for a lower priority task

to release a shared resource. It can cause unbounded delay to high pri-

ority tasks and these tasks may miss their deadlines, thus degrading the

performance of real-time systems. Recently, Liu Sha et al have suggested a

concurrency control algorithm for distributed real-time systems to solve this

problem[37]. This paper presents a priority-driven two-phase lock protocol

called the read/write priority ceiling protocol. This algorithm ensures that a

high-priority transaction can be blocked by lower priority transactions for at

most the duration of a single embedded transaction. Salient features of this

protocol are as follows:

Task r, the highest priority task ready to run, is assigned the processor.

Before an embedded transaction of r can read (or write) data object O,

it must first obtain the read(or write) lock on the data object 0. In ad-

dition, each embedded transaction follows the two-phase lock protocol

and all the locks it holds will be released at the end of the transaction.

Let O be the data object with the highest r/w priority ceiling of all

data objects currently locked by transactions other than those of r.

When task r's transaction attempts to lock a data object O, r will be

blocked and the lock on an object O will be denied, if the priority of

task r is not higher than the r/w priority ceiling of data object O. In

this case, task r is said to be blocked by the task whose transaction

holds the lock on O. If task r's priority is higher than the r/w priority

ceiling of O, then r is granted the lock on O.

A task r and its transaction T use the priority assigned to r, unless

T blocks higher priority transactions. If transaction T blocks higher

priority tasks, T inherits PH, the highest priority of the tasks blocked

by T. Priority inheritance is transitive. Finally, the operations of pri-

ority inheritance and of the resumption of original priority must be

indivisible.

When a task r does not attempt to execute an embedded transaction,

it can always preempt other tasks and their embedded transactions ex-

ecuting at a lower priority level. This reduces the blocking time of a

higher priority task from the entire execution times of lower priority

tasks to only the duration of lower priority tasks' embedded transac-

tions.

Unlike real-time systems where task conflict over shared data may last

for a short period of time, in real-time database systems, transaction conflict

overshareddata may last as long as the execution time of a transaction. In

this case,the abovealgorithm may not be sucha satisfactory schemefor the

distributed real-timedatabasesystem,plus that it is anextremeconservative

onewith respectto the numberof transactionsthat canexecuteconcurrently.

Also it requiresprior knowledgeabout the data objectsto be accessedby each

transaction.

Priority abort algorithmsareintroduced to overcomethe "life-time block-

ing" problems of priority ceiling algorithms by aborting the low priority trans-

action. These priority abort schemes again have their problems that it may

lead to high transaction abort rate due to data access conflict. J. Huang, J.

Stankovic et al propose a conditional priority inheritance scheme [17]. Here if

the low priority transaction is near completion, it inherits the priority of the

high priority transaction, thus avoiding an abort with its waste of resources;

otherwise, the low priority transaction is aborted, thereby avoiding the long

blocking time for the high priority transaction, and also reducing the amount

of wasted resources used thus far by the low priority transaction. The per-

formance studies indicate that with respect to deadline guarantee ratio, the

conditional priority inheritance scheme works better than the priority ceiling

scheme as well as the priority abort schemes.

In the case of distributed systems, where resources can be distributed

among the nodes connected by networks and replicate copies exist, it will

become even more difficult to design a concurrency control algorithm to

satisfy the time restrictions. We propose to look at this issue.

2.3 Replica Control

A replicated object is a data item that is stored redundantly at multiple

locations.Replication isintroduced into distributedsystems to improve the

reliabilityand availability.In addition,replicationcan enhance performance

I0

by allowing user requests initiated at sites where the data are stored to be

processed locally without incurring communication delays, and by distribut-

ing the workload of user request to several sites where the subtasks of a user

request can be processed concurrently. These benefits of replication must

be seen in the light of the additional cost and complexities introduced by

replication control. Replica control algorithms are mechanisms to manage

a physically distributed collection of data objects to appear as if it were a

single, highly available data object. The following are some of the existing

algorithms(e.g. [16, 3, 4, 14, 15, 19, 25, 33, 21, 41, 42, 20, 31, 45, 11, 43]) in

this area.

Existing algorithms for update synchronization in replicated database

system follow a semidistributed model of update execution because only one

site completely executes an update and other sites just commit its writes. In

[41], M. Singhal presents a fully-distributed approach to update synchroniza-

tion where each site completely executes every update. This can certainly

improve the performance by its parallelism. Slow machines will not slow

down the whole system. Also it reduces the communication overhead.

In replicated database consistency may have two meaning: internal con-

sistency and mutual consistency. Internal consistency deals with the se-

mantics of data objects within a single database copy; mutual consistency

requires that all database copies have the same value at one time. [41] deals

with internally consistent state. I.e. when all update activity ceases, all

copies of the replicated database must reach the same value. Since each site

completely executes every update, a write only has to lock one copy. This

one copy lock for write results in shorter response time and shorter lock hold-

ing time. There will be less interaction among sites, so less time wasted on

synchronization. Reliability and availability are improved. And one site's

failure will not affect the whole system since it will not block any operations.

11

The standard quorum consensusmethodrequiresa majority of sitesto be

involved in write operations. It can turn out to be very expensivewhen the

number of sites is very large. A. Kumar presentsa method which organizes

a group of objects into a multi-level hierarchy[20]. At each level it applys

the samerules of quorum consensusalgorithm, i.e. a majority of sites have

to participate in the operation of writes and the number of sites involved in

readsand writes to the sameobject has to exceedthe total number of sites.

It will greatly reducethe numberof sites involvedin operations. Thereforeit

will definitely reducethe averagemessagecost. A performancecomparison,

in termsof availability andmessagecostagainstmajority voting anddynamic

voting is carried out. It showsan improvementin the messagecost, but no

singlemethod wasfound to dominate in terms of availability.

In [33], Pu, Left et al introduce the idea of valued redundancy. It says

that anyobject canhavea valuefor its redundancy.By replicating only the

most valuable objects, we can improve the performanceof the distributed

systems.The valueof the system is determined by its usefulnessand main-

tenancecost. There is a differencebetweenweightedvoting and valued re-

dundancy: Weightedvoting is an algorithm to maintain consistencyamong

the copiesof an object. Valued redundancyis an approach to managethe

degreeof redundancyfor replicateddata. Weightsareassignedto the copies

in weightedvoting to representthe static differencerelative to eachother. A

copy residingon a faster machinewould receivea heavierweight. Valuesare

assignedto the copiesto representthe dynamic properties relative to other

resourcesin the system, so a higher value for a copy would keep it longer

in the local cache.An object with low frequenceof write, high frequenceof

read will have higher value. That is to say,we should have more copiesof

this object to keephigh availability.

Replication is the key factor in makingdistributed real-time systemsmore

12

reliable than centralized ones. However, if replication is used without proper

synchronization mechanisms, consistency of the system might be violated.

In [43], S.H.Son presents a synchronization algorithm for distributed real-

time systems with replicated data. It reduces the time required to execute

physical write operations when updates are to be made on replicated data

objects, by relaxing the level of synchronization between write operations on

data objects and physical write operations on copies of them. At the same

time, the consistency of replicated data is not violated, and the atomicity of

transactions is maintained. The algorithm exploits the multiple versions of a

data object and the semantic information of read-only transactions is achiev-

ing improved system performance. The algorithm also extends the notion of

primary copies such that an update transaction can be executed provided

at least on token copy of each data object in the write set is available. The

number of tokens for each data object can be used as a tuning parameter to

adjust the rebustness of the system. Multiple versions are maintained only

at the read-only copy sites, hence the storage requirement is reduced.

Reliability does not come for free. There is a cost associated with the

replication of data: storage requirement and complicated control in synchro-

nization. For appropriate mangement of multiple versions, some communi-

cation cost is inevitable to inform data objects about activities of read-only

transactions. There is also a cost associated with maintaining the data struc-

tures for keeping track of versions and time-stamp.

Replication is introduced into distributed systems to improve availability

which will result in fault-tolerance and high concurrency. These may be

achieved at the cost of deteriorated performance in the sense of response

time of update operations. How to achieve all these at the lowest cost of

deteriorated performance is our research goal in the area of replica control.

13

2.4 Centralized and Distributed Real-Time Systems

A real-time system is a system whose correctness depends not only on the

logical results of computation, but also on the time at which the results are

produced. The activities in the real-time systems have timing constraints

associated with them which must be satisfied in order for the system to

exhibit correct behavior.

Computers have been used for real-time applications for a long time. The

design and implementation of such systems has usually been carried out as

an extension of the system design principles used for general purpose com-

puter systems. In particular, real-time systems have often been designed as

interrupt-driven systems with priority-based scheduling. Priority structures

are used to accomplish the real-time processing by assigning higher priority

to critical tasks.

Hard real-time applications are those in which the time constraints of the

processing requests play a major role; that is, not meeting the constraints of

an accepted processing request is considered a failure. A soft constraints on

the other hand may be desirable to meet, but failure to do so does not cause

a system failure. Our goal is to study the performance of distributed system

in soft real-time applications.

Zhao's paper of Scheduling Tasks with Resource Requirements in Hard

Real-Time System [32] proposes an algorithm with heuristic function to

schedule the arriving tasks with time restrictions and resources requirements.

As soon as a new task enters the system, the scheduler is going to see if it can

satisfy the requirement of the new task while still satisfy the requirements

of the existing tasks. So a task will either be executed by its deadline or

aborted.

There are many real-time tasks scheduling algorithms like the above one

in centralized systems(e.g. [23, 28, 24, 49]). Tasks scheduling in distributed

14

systemswill bea quite different problem. Herethere is nocentralizedmecha-

nismwhich canplay this role of a centralizedtasksscheduler. Instead,every

distributed processwork on its own and they have to come to a consensus

by working separately. [47, 44, 32, 46] aresomeof the distributed real-time

tasks schedulingalgorithms. Most of the existing algorithms in distributed

real-time systemsareconcernedwith the operating systemlevel, or the allo-

cation of resources[47],or the optimal distribution of tasksamongthe nodes

of networks accordingto the availabilities of the resourceson the nodes,or

the workload reconfiguration in systemnodefailure [18,46] or the real-time

communication [12, 1].
For example, in [47], H. F. Wedde, G. S. Alijani et al analyzecurrent

and future needsin designingand implementing adaptive distributed real-

time systemsand formulated designrequirementsin order to realizea highly

integrated design:

• multiplicity and multifunctionality on the hardware/interconnection

level;

• distributed resourceallocation without any form of centralizedcontrol

function on the operating systemlevel;

• flexibl_ and efficient distribution and relocation of information on the

file system/application level.

On the operating system level, they use the transparent distributed re-

sourceschedulingscheme of their novel distributed operating system DRAGON

SLAYER, thus satisfying the service requirements formulated for the inte-

grated system design. In the MELODY file system, high reliability is achieved

through replication of files. Flexibility of information handling in terms

of meeting real-time constraints is achieved through the local file assign-

ers which continuously evaluate the relevant cost and time delay factors in

15

cooperation with the other file assigners managing copies of this file. In this

way they determine, for each file, whether the total number of copies would

be increased or decreased, or where to relocate file copies to be public or

private. Only public copies need to be up-to-date and consistent. Status

changes would be managed by the file managers as well upon request of at

least one file server.

In [46], M. Takegaki et al consider a fault-tolerant architecture for loosely

coupled distributed real-time systems, and proposed a distributed task man-

agement method that aims at network-wide fault tolerance, compatible with

flexible resource utilization. The task management method includes a check-

point data transfer mechanism and an adaptive task remapping mechanism.

A policy of task remapping is based on the thermodynamic diffusion model,

in which tasks are diffused among sound nodes, and global balance is achieved

by several repetitions of local load sharing. Convergence to this steady state

is theoretically ensured. The protocol of the proposed task remapping al-

gorithm, 2-phase diffusion algorithm, is completely distributed and weakly

synchronized; each node starts the same algorithm periodically, without wait-

ing for any messages but waits for messages from neighboring nodes during

execution of the algorithm. The proposed algorithm is simple enough to

execute in a real-time computing environment. Using this task remapping

mechanism, we can construct a new fault tolerant system which can survive

any successive nodal failures.

Many other strategies exist to solve the problem of resource allocation or

the problem of tasks distribution so as to reach a good performance in the

distributed real-time systems. We are more concerned with the consistency

control problems. Specifically, we are concerned with adapting the existing

consistency mechanisms in distributed systems to the real-time applications.

16

2.5 Performance Evaluations of Distributed Systems

Performance of communication systems has been well studied with both sim-

ulation and analysis methods[9, 13, 27, 6]. Performance of distributed sys-

tems which is a major issue in the design of distributed systems, however,

has been studied mostly using simulations or using analysis on a simplified

model[31, 45, 38, 11, 36]. That is because of the complexity of the behav-

ior of such systems. Right now no good intuition about the performance of

distributed systems is available.

Efforts have been made in building evaluation tools for testing and eval-

uation of distributed real-time systems [5]. Because of the complexity of

the distributed real-time system, analysis and simulation techniques have

become infeasible in many cases. The approach in [5] was to implement the

distributed computer testbed which provides the following capabilities:

• A reconfigurable facility for implementing the relevant features of the

distributed architecture under consideration, known as System Under

Study(SUS).

• Comprehensive instrumentation to observe the behavior and perfor-

mance of selected SUS components in real-time under a variety of con-

ditions.

What are the performance criteria of distributed real-time systems and

how to evaluate the performance of distributed real-time systems efficiently

are the issues to be studied.

3 Proposed Work

As mentioned in the introduction, we are interested in the design and analysis

of algorithms for distributed real-time systems. We are especially interested

17

in the consistency control algorithms for these systems.

In general, distributed systems are characterized by the distribution of

resources. Whether the access control to the resources is centralized or dis-

tributed is still the choice of the designer. While distributed control enhances

the system robustness to component failures, it has an associated cost for

coordination among the control components. Since much of the work in

distributed systems is aimed at building robust systems as opposed to build-

ing cost-effective and efficient systems, cost and time have been secondary

objectives for designers.

Real-time systems, on the other hand, are designed with the primary ob-

jective of meeting the time-constraints of its requests. Both system cost and

robustness have been the secondary objectives for the design. Accordingly,

much of the effort in this area has been in developing efficient centralized

control algorithms. In particular, considerable efforts are expended in the

development of centralized scheduling algorithms.

However, knowing the criticality of the applications for which the real-

time systems are implemented, robustness appears to be a necessary charac-

teristic of these systems. Whether it is possible to effectively include both

robust control and time-critical constraints into distributed real-time algo-

rithms is the topic of investigation of this research. Especially, we are inter-

ested in the following issues.

1. Can resource replication be used to facilitate meeting the task dead-

lines in distributed real-time systems? In case replication is present,

determine the types of replica control algorithms suitable to meet the

time-critical needs as well as the consistency needs of the applications.

2. Determine the concurrency control algorithms suitable for distributed

real-time systems. Especially study the characteristics of the exist-

ing concurrency control algorithms in terms of response time guaran-

18

tees. Also look at the possibility of designing algorithms with weaker-

consistency provisions but stronger time guarantees.

3. Similar studies are necessary for designing mutual exclusion algorithms

especially suitable for distributed real-time systems.

4. In addition, we propose to study other aspects of the relationships

among the three important factors in these systems: time-boundedness,

robustness, and consistency.

5. Evaluate the performances of these consistency mechanisms under a

variety of realistic conditions.

Since real-time communication is already a well-researched area, we do not

intend to invent new algorithms in the area of real-time communications.

Instead, we propose to choose a set of existing algorithms with known char-

acteristics (time-boundedness, robustness, and consistency) and pursue the

above mentioned issues. Following is a detailed discussion of the issues that

we propose to investigate.

3.1 Mutual Exclusion

As mentioned in Section 2.1, several solutions are proposed to solve the

mutual exclusion problem in distributed systems. It is not clear if these

algorithms are also applicable to distributed real-time systems. In fact, due

to the absence of any guaranteed performance bounds, most of the algorithms

may not be suitable for real-time applications. Hence, there is a need to either

modify the existing algorithms or design new algorithms to meet the needs

of the real-time systems.

For example, consider the token-ring based mutual exclusion algorithm.

Here, to incorporate the task deadline concept, we can first gather the slack

19

time information from each of the nodes in the token ring, and then pass the

token to the node with the least slack time in the preceding round. This may

lower the effective utilization of the resource as well as the communication

system due to the additional token rotations. But it may achieve the desired

effect of meeting the deadlines of the tasks. Similar extensions are possible

in non-ring based algorithms such as tree-based algorithms where priorities

based on deadline can be assigned for mutually exclusive access.

We propose to investigate other mutual exclusion algorithms that are

suitable for real-time systems. The proposed research will result in guidelines

to design such algorithms under different system assumptions. Specifically,

• Develop criteria to evaluate the suitability of mutual exclusion algo-

rithms to distributed real-time systems.

• Either suggest modifications to the existing algorithms or design new

algorithms to meet the needs of real-time systems.

Illustrate the evaluation criteria by applying them on a set of existing

algorithms. Choose the ones that are more amenable for use in real-

time systems.

• Develop guidelines for future developments.

3.2 Concurrency Control

Concurrency control is a fundamental requirement of any system that allows

concurrent transactions. It enforces a type of serializability among the exe-

cuting transactions. As mentioned earlier, this control can be implemented

as either centralized or distributed. While centralized algorithms appear to

be more suitable in guaranteeing time-bounded responses, designing such al-

gorithms is not easy. Several centralized control algorithms (mainly in the

20

guise of schedulingalgorithms) have already been proposed. The problem

of dealing with time-bounded responsebecomeseven more complex in the

context of distributed control(communication,distributed clock, site failure,

etc). While the existing algorithms havelookedat properties suchas dead-

lock, starvation, and throughputs, we needto investigateother issuessuch

as boundedresponsetimes. Especially,the degreewith which the conserva-

tive and optimistic strategiesareamenableto time-boundednessneedsto be

determined. Similar investigationsarenecessaryfor locking and time-stamp

strategies.

As an exampleof possibleconcurrencycontrol algorithms for real-time

systems,considera conservativetimestamp policy. Traditionally, the times-

tampsaregeneratedbasedon the localclockand thesite-id wherethe request

for the resourceoriginated. In the context of real-time systems, if it is pos-

sible to generate timestamps which also reflect the slack time of the request,

then the existing concurrency control schemes can be directly used. How-

ever, any suggested timestamp generation scheme should also guarantee the

imposition of required serializability. This needs further work.

We propose to research into the following issues:

Study some practical real-time systems in terms of their concurrency

control requirements, degree of transaction conflicts, serializability re-

quirements, etc.

Determine the suitability of centralized, semi-distributed, and distributed

concurrency control in meeting the needs of real-time systems (e.g., ro-

bustness and time-boundedness).

• Determine the appropriateness of the time-stamp based and lock-based

CC algorithms for real-time applications.

21

• Determine the suitability of optimistic and conservativealgorithms to

meet the needsof the systems.

• Basedon the abovestudy, developconcurrencycontrol schemesfor a

chosenset of real-time systemspecifications

3.3 Replica Control

As mentioned in Section 2.3, replication is claimed to improve fault-tolerance

and availability of distributed systems. These goals are achieved through

appropriate replica control algorithms that control the number of copies to

be accessed for read and write operations on resources. Clearly, the time-

bound aspect of transactions (or requests) was hardly considered in the design

of these algorithms.

Some of the concerns in applying the existing replica control algorithms

to distributed real-time systems are:

• Will replication help in the distributed real-time systems? If yes, how

can the replication in distributed systems help in distributed real-time

systems?

• While the algorithms perform well under failures, the overhead is high

when no failures are present. In the context of real-time systems, we

need acceptable performance (time-bounded response time, for exam-

ple) under all conditions.

• If the requests to local resources are more frequent than non-local ac-

cesses, the replica-control algorithm should be modified accordingly.

In the context of distributed real-time systems, we propose to investigate

the following issues.

22

• Characterize the current replica control algorithms in terms of their

suitability to real-time systems.

• Study the different consistencyand time-bounds requirements in dif-

ferent distributed real-time applicationsand designsuitable algorithms

for typical applications.

• Suggesta few techniquesto include the time-boundednessinto the al-

gorithms. Thesearegeneraltechniquesthat may needfurther tailoring

for a given algorithm.

• Designa set of replica control algorithms basedon the suggestedtech-

niques.

• Evaluate the algorithms.

3.4 Performance Evaluation

Distributed systems have focused on optimizing system performance in an

average sense, i.e. minimize average response time and maximize average

throughput. Real-time scheduling, on the other hand, has focused on the

timing needs of individual computations. In the distributed real-time sys-

tems, the performance metrics should include the satisfactory rate of meeting

deadlines, average response time and throughput.

Much of the existing algorithms in real-time systems assume complete

knowledge of the transactions: arrival times, resource requirements, com-

putation time, etc. However, many times this knowledge is available only

as distributions. Depending on the variations of the distributions, some of

the scheduling algorithms which are rated high for real-time systems, may

in fact perform poorly under such variations. In addition, several exception

handling techniques may be necessary to handle such situations. We propose

23

to investigate the impact of such distribution assumptionson the existing

algorithms, and evaluate their sensitivity to the variations in the values.

This involvesdevelopinga distributed real-time systemsimulator and a load

generator. The work is currently in progress.

In this context, weproposeto investigate the following issues:

• Determine somedistributions for arrivals, resource and computation

requirements of some practical distributed real-time systems.

Evaluate the performance of the existing real-time system algorithms

(e.g., scheduling algorithms) under practical loads. (This will involve

simulations.)

• Investigate and develop the performance criteria for distributed real-

time system.

Evaluate the existing distributed system algorithms and newly devel-

oped distributed real-time system algorithms against the performance

criteria for distributed real-time systems.

• If the current performance evaluation tools are found to be unsuitable

or suboptimal, attempt to design new tools.

4 Conclusion

A distributed system is a system with a number of processing elements and

storage devices, connected together by a communication network. It has

been a well studied subject as far as the consistency control mechanisms are

concerned. Real-time applications are those applications with strict require-

ments on the timing behavior of the system. Here we propose to investigate

24

the consistency control mechanisms of distributed system in real-time appli-

cations.

Distributed real-time systems are systems that consist of several dispersed

concurrent processes that may have complex and time critical interactions.

Most of the work in this area has been going from the real-time systems

studies to distributed real-time systems to make use of the good features of

fault-tolerance and high availability of the distributed systems. Our work

is from the other direction. That is, we approach the distributed real-time

systems problems from the existing distributed systems and try to design

and analyze the distributed system algorithms with real-time requirements.

In particular we are try to investigate the consistency control mechanisms Of

the distributed real-time systems.

As the distributed systems will be the future of computer systems and

real-time is and will be the features required by the computer users, our

research will prove to be of great significance in computer science.

References

[1] T. Ae, M. Yamashita, and H. Matsumoto. A response time estimation

of real-t, ime networks. Proceedings real-time systems symposium, pages

198-207, Dec.87.

[2] Divyakant Agrawal and Amr El Abbadi. An efficient and fault-tolerant

solution for distributed mutual exclusion. ACM transactions on com-

puter systems, Vol 9, No. 1:1-20, Feb.91.

[3] B. S. Bacarisse and S. Bek Baydere. Reliability of replicated files in

partitioned networks. IEEE, pages 98-101, Mar.90.

25

[4]

[5]

[6]

[7]

Is]

[9]

[101

[11]

[12]

Daniel Barbara and Hector Garcia-Molina. The case for controlled incon-

sistency in replicated data(position paper). IEEE, pages 35-38, Mar.90.

Devesh Bhatt, Adel Ghonami, and Ranga Ramanujan. An instrumented

testbed for real-time distributed systems development. Proceedings real-

time systems symposium, pages 241-250, Dec.87.

Laxmi N. Bhuyan, Dipak Ghosal, and Qing Yang. Approximate analysis

of single and multiple ring networks. IEEE transactions on computers,

Vol. 38. No. 7:1027-1036, Jul.89.

Ye-In Chang, Mukesh Singhal, and Ming T. Liu. An improved o(log n)

mutual exclusion algorithm for distributed systems. 1990 International

Conference on parallel processing, pages III295--III302, 90.

Ye-In Chang, Mukesh Singhal, and Ming T. Liu. A fault tolerant al-

gorithm for distributed mutual exclusion. 9th Synposium on Reliable

Distributed System, Oct.90.

Vijay Chauhan and Adarshpal S. Sethi. Performance studies of token

based local area networks. Proceddings of 10th Conference on Local

Computer Networks, pages 100-107, Oct.85.

W. W. Chu and C.-M. Sit. Estimating task response time with con-

tentions for real-time distributed systems. Proceedings real-time systems

symposium, pages 272-281, Dec.88.

Bruno Ciciani, Daniel M. Dins, and Philip S. Yu. Analysis of replication

in distributed database systems.

L. Ciminiera and A. Valenzano. Performance analysis of acknowledg-

ment mechanisms in token-bus networks. Proceedings real-time systems

symposium, pages 179-185, Dec.87.

26

[13] Timothy A. Gonsalvesand FouadA. Tobagi. Comparative performance

of voice/data local area networks. IEEE journal on selected areas in

communications, Vol. 7. No. 5.:657-669, Jun.89.

[14] Anna Hac. A distributed algorithm for performance improvement

through file replication, file migration, and process migration. IEEE

transactions on software engineering, Vol.15, No.11:1459-1470, Nov.89.

[15] Maurice Herlihy. Type-specifc replication algorithms for multiproces-

sots. IEEE, pages 70-74, Mar.90.

[16] Hui-I Hsiao and David J. DeWitt. Replicated data management in the

gamma database machine. IEEE, pages 79-84, Mar.90.

[17] J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley. On using

priority inheritance in real-time databases. Proceedings real-time systems

synposium, pages 210-221, Jul.91.

[18] R. M. Kieckhafer. Task reconfiguration in a distributed real-time system.

Proceedings real-time systems symposium, pages 25-32, Dec.87.

[19] James Jay Kistler. Increasing file system availability through second-

class replication. IEEE, pages 65-69, Mar.90.

[20] Akhil Kumar. Performance analysis of a hierarchical quorum consensus

algorithm for replicated objects. IEEE, Jul.90.

[21] Rivka Ladin. Lazy replication: Exploiting the semantics of distributed

services. IEEE, pages 31-34, Mar.90.

[22] L. Lamport. Time, clocks and ordering of events in distributed systems.

Communications of A CM, pages 558-565, Jul.78.

27

[23] Shem-TovLevi and Ashok K. Agrawala. Real-timesystem design,90.

[24] Shem-TovLevi, Daniel Mosse,and Ashok K. Agrawala. Allocation of

real-time computations under fault toleranceconstraints. Proceedings

real-time systems symposium, pages 161-171, Dec.88.

[25] Darrell D. E. Long. Analysis of replication control protocols. IEEE,

pages 117-122, Mar.90.

[26] M. Ma_kawa. A v/'ff algorithm for mutual exclusion in dicentralized

systems. A CM transaction on computer systems, pages 145-159, May.85.

[27] Peter Martini, Otto Spaniol, and Thomas Welzel. File transfer in high-

speed token ring networks: performance evaluation by approximate

analysis and simulation. IEEE journal on selected areas in commu-

nications, Vol. 6. No. 6:987-996, Jul.88.

[28] Frank William Miller. A predictive real-time scheduling algorithm. De-

partment of computer science, the university of Iowa, Aug.89.

[29] Masaaki Mizuno, Mitchell L. Neilsen, and Raghavendra Rao. A token

based distributed mutual exclusion algorithm based on quorum agree-

ments. IEEE, pages 361-368, Jul.91.

[30] Sape Mullender. Distributed systems. ACM, 89.

[31] R. D. Nelson and B. R. Iyer. Analysis of a replicated data base. Per-

formance Evaluation, pages 133-148, May.85.

[32] Francis J. Prusker, Edward P1 Wobber, Wei Zhao, Krithivasan Ramam-

ritham, and John A. Stankovic. The siphon: managing distant repli-

cated repositories scheduling tasks with resource requirments in hard

real-time systems. IEEE proceedings of the workshop on management of

28

replicated data IEEE transactions on software engineering, Vol. SE-13,

No. 5:44-47 564-573, Nov.90 May.87.

[33] Calton Pu, Avraham Left, Frederick Korz, and Shu-Wie Chen. Valued

redundancy. IEEE, pages 76-78, M_.90.

[34] Kerry Raymond. A tree-based algorithm for distributed mutual exclu-

sion. A CM transactions on computer systems, pages 61-77, Feb.89.

[35] Beverly A. Sanders. The information structure of distributed mutual

exclusion algorithms, Jun.86.

[36] Kenneth C. Sevcik. Comparison of concurrency control methods using

analytic models. Information Processing, 83.

[37] Liu Sha, Ragunathan Rajkumar, Sang Hyuk Song, and Chun-Hyon

Chang. A real-time locking protocol. IEEE transaction on computers,

Vol.40, No.7:793-800, Jul.91.

[38] Shiow-Chen Shyu and Victor O. K. Li. Performance analysis of static

locking in distributed database systems. IEEE transaction on Comput-

ers, Vol.39, No.6, Jun.90.

[39] Mukesh Singhal. A dynamic information-structure mutual exclusion

algorithm for distributed systems. IEEE ICDCS, pages 70-78, 89.

[40] Mukesh Singhal. Theory and construction of optimal dynamic

information-structure mutual exclusion algorithms for distributed sys-

tems. IEEE transaction on parallel and distributed systems, pages 70-78,

89.

29

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Mukesh Singhal. Update transport: a new technique for update synchro-

nization in replicated database systems. IEEE transactions on software

engineering, Vol.16, No.12:1325-1336, Dec.90.

Mukesh Singhal and A. K. Agrawala. A concurrency control algorithm

and its performance for replicated database systems. IEEE, pages 140-

147, Sep.86.

S. H. SON. Using replication for high performance database support in

distributed real-time systems. Proceedings real-time systems symposium,

pages 79-85, Dec.87.

Jay K. Strosnider, Tom Marchok, and John Lehoczky. Advanced real-

time scheduling using the ieee 802.5 token ring. Proceedings real-time

systems symposium, pages 42-52, Dec.88.

U. Sumita and O. R. Liu Sheng. Analysis of query processing in dis-

tributed database systems with fully replicated files: A hierarchical ap-

proach. Perfornamce Evalluation, pages 223-238, Aug.88.

M. Takegaki, H. Kanamaru, and M. Fujita. The diffusion model based

task remapping for distributed real-time systems. Proceedings real-time

system_ synposium, pages 2-11, Jul.91.

H. F. Wedde, G. S. Alijani, F. Kang, and B.-K. Kim. Melody: a dis-

tributed real-time testbed for adaptive systems. Proceedings real-time

systems symposium, pages 112-119, Dec.88.

C. M. Woodside and D. W. Craig. Local non-preemptive scheduling

policies for hard real-time distributed systems. Proceedings real-time

systems symposium, pages 12-16, Dec.87.

30

[49] Wei Zhao,Krithivasan Ramamritham, and John A. Stankovic. Preemp-

tive schedulingunder time and resourceconstraints. IEEE transactions

on computers, Vol. C-36, No. 8:949-960, Aug.87.

31

MUTUAL EXCLUSION AND REPLICA CONTROL IN

DISTRIBUTED REAL-TIME SYSTEMS: A PROPOSAL

Yinghong Kuang

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

June 29, 1992

1 Introduction

A distributed system is a system with a number of processing elements and

storage devices, connected together by a communication network [24]. Po-

tentially, this makes a distributed system more powerful than a conventional,

centralized one in two ways. First, it can be more reliable, because every

function can be replicated several times. Second, a distributed system can

do more work in the same amount of time, because many computations can

be carried out in parallel. These two properties, fault tolerance and par-

allelism, give a distributed system the potential to be much more powerful

than a centralized one.

Real-time applications are those applications with strict requirements on

the timing behavior of the system. The system that support the execution

of real-time applications ensuring that the timing requirements are met are

often referred to as real-time systems. Task scheduling is a vital component

of real-time systems. Accordingly, this is a widely researched area resulting

in real-time schedulers [39, 35, 22].

Due to the potential for parallelism and fault-tolerance in distributed

systems, they are increasingly the preferred architectures for real-time sys-

tems. Here, by real-time distributed systems we mean those systems that

consist of several dispersed concurrent processes that communicate with one

another by exchanging messages and may have complex and time-critical

interactions [5]. The complex interactions include sharing tasks among the

nodes of a network, scheduling of tasks and maintaining consistency among

processes [38].

The existing approaches to distributed real-time systems include en-

haJacements to operating systems [18, 22, 37], communication systems [10, 1]

as well as distribution of subtasks according to resource allocation and fault

tolerance requirement [19, 8, 39, 26, 37, 19]. While some studies start from

the centralized implementation of real-time systems and attempt to intro-

duce the distributed processing aspects in to the systems, others are starting

from the general distributed systems and attempt to consider real-time sys-

tems as a viable application. Here, we chose the latter approach.

We propose to study the consistency control aspects of distributed real-

time systems. In particular, we propose to concentrate on two issues men-

tioned above: mutual exclusion and replica control. Since the existing solu-

tions to these issues are mainly aimed at non-real time systems with empha-

sis on throughput and availability rather than on time-bounded responses,

the proposed work wiU be useful in building distributed real-time systems.

To achieve this task, we will attempt to establish a relationship between

time-boundedness, availability and concurrency in these systems. This may

also require formalization of the semantics of concurrent real-time transac-

tion executions. As a result of this study, we should be able to analyze

the consistency control issues and then propose algorithms to handle the

requirementsof thesesystems.

This document isorganized as follows.Section 2 reviews the current

work done in the areasof the mutual exclusionand replicacontrolfordis-

tributedsystem and real-timesystems. In Section3 we outlinethe work

that we propose to do in distributedreal-timesystems. Finally,Section4

has some conclusions.

2 Previous Work

In this section, we summarize some of the existing work dealing with mutual

exclusion and replica control of distributed systems.

2.1 Mutual Exclusion in Distributed Systems

The problem of mutual exclusion arises when several processes, operating

in parallel, compete for resources that cannot be shared and therefore con-

straints have to be applied to ensure that when one process is using such

a resource none of the others can gain access to it. There are numer-

ous solutions for the mutual exclusion problem in distributed systems(e.g.,

[17, 21, 28, 2, 23, 7, 6, 29, 30, 31]). These fall into one of the following two

categories: token based and non-token based.

In a token-based scheme, a logical token exists for each sharable resource.

The process or node currently holding the token is authorized to access the

corresponding resource in a mutually exclusive fashion. The simplest token-

based scheme assumes a logical ring of processes or nodes along which the

token is propagated. Several other complex token based schemes also exist

(e.g., [23, 7, 6]). Here we briefly summarize three such schemes.

Ye-In Chang et al have proposed two variants of token-based mutual

exclusion algorithms. In the first variant [6], they proposed an O(log N)

token-based mutual exclusion algorithm for distributed systems. Here, a

logical tree is maintained in a fully connected network, and the root is the

last site to get the token among the current requesting nodes when no mes-

sage is in transmission. When a node invokes mutual exclusion, it sends its

request to the node possibly holding the token. The request is continuously

forwarded until it arrives at the root. Therefore, the number of messages

to get hold of the token is proportional to the number of nodes on the path

leading to the root. To speed up the search for the token, the algorithm

attempts .to reduce the height of the logical tree. The message complex-

ity of the algorithm is O(log N) in light traffic, where N is the number of

nodes, and is reduced to three in heavy traffic. Furthermore, the algorithm

is modified to be resilient to node failures and a recovery procedure is also

presented to restore a recovering site consistently into the system.

In the second one [7], a token-based mutual exclusion algorithm for dis-

tributed systems which is fault tolerant to communication link and site fail-

ures is presented. In the algorithm, the system topology is a graph such

that each site has more than one path to the site holding the token. The

algorithm is fault tolerant due to the fact that a site has alternative paths

to searchfor the tokenin case of communication link or site failures. Ev-

ery site communicates only with its neighboring sites and holds information

only about its neighbors. When a site invokes mutual exclusion, a request

message is sent along a path from the requesting site to the token-holding

site. The token is passed along the same path in reverse direction and as

it goes, the direction of the edges is reversed so that the path always leads

to the site holding the token. This algorithm is free of deadlock, starvation

and fault tolerant and has a recovery procedure to restore a recovering site

consistently into the system.

M. Mizuno et aJ proposed a token based mutual exclusion algorithm

which uses data structures similar to coteries, called quorum agreements [23].

The performance of the algorithm depends upon the quorum agreements

used. When a good quorum agreement is used, the overall performance

of the algorithm compares favorably with the performance of other mutual

exclusion algorithms.

In a non-token based system, mutual exclusion is achieved by message

communication between processes. These processes have only local vari-

ables, and the only way they can exchange information with each other is

through explicit communication. There are several algorithms under this

category (e.g., [17, 21, 28, 2, 29, 30, 31]). Here we describe two efficient

algorithms.

In [30], Mukesh Singhal states that to guarantee mutual exclusion, the

minimal connectivity needs to be maintained at all times so that when a

site enters into competition for the critical section (CS), it comes to know

of all the sites and only the sites which axe concurrently competing for CS.

To be specific, there is a request graph for the whole system which records

the directions of mutual exclusion requests from sites. A directed edge from

,9/to Sj denotes that whenever Si invokes mutual exclusion, it will request

permission from Sj. There should Mways exist a directed edge between

every pair of sites and the direction of edges is always towards the site

4

whichexecutedCSlater with the edge adding and deleting rules.

The message traffic generated by the algorithm per CS execution has

been analyzed. When the rate of CS request is low, (n - 1) messages are

exchanged per CS execution and when the rate of CS request is high, on the

average 3, (n - 1)/2 messages are exchanged per CS execution.

Solutions to mutual exclusion problem are often vulnerable to site and

communication failures. Intersecting quorums can be used to provide fault-

tolerant solutions, but they usually incur high communication costs. Agrawal

and Abbadi present a new quorum-based algorithm which has low commu-

nication cost and can handle both types of failures [2]. Given a set of sites,

we can logically organize these sites to form a tree. A quorum can be con-

structed by selecting any path starting from the root and ending with any of

the leaves. If successful, this set of sites constitutes a quorum. If it fails to

find a path as a result of the failure of a site, then the algorithm must sub-

stitute for that site with two paths, both of which starting from the children

of this failed site and terminate with leaves. In this way, we can construct

a tree quorum. The tree quorums formed this way satisfy the intersection

and the minimality properties of coteries. In the best case when the system

is free from failure, only ['log N] sites are necessary to form a tree quorum.

In the worst case [(N + 1)/2] sites are required to form a quorum. The

algorithm can tolerate the failure of up to N- [log N] specific sites and still

form a tree quorum.

This algorithm exhibits the useful property of gr_eful degradation, i.e.

as failures occur, and increase, the cost of forming a quorum may increase

and the probability of forming a quorum decreases. The penalty for failures

closer to the root is more severe than the failures in the vicinity of the

leaves. The availability of an algorithm is defined as the probability of

forming a quorum successfully in that algorithm. Analysis results show that

the tree quorum algorithm can achieve comparable degree of availability as

the majority quorum algorithm but at substa_ntially lower costs. In practice,

5

v ¸

this algorithm can use a spanning tree in a network. A spanning tree with

a minimum radius is most appropriate for our algorithm and will result in

minimum sized quorums.

None of these algorithms axe suitable for use in distributed real-time

systems due to lack of time guarantees. The extensions that may yield

these guarantees are not obvious. We propose to look at this aspect in the

proposed research.

2.2 Replica Control

A replicated object is a data item that is stored redundantly at multiple

locations. Replication is introduced into distributed systems to improve the

reliability and availability. In addition, replication can enhance performance

by allowing user requests initiated at sites where the data are stored to be

processed locally without incurring communication delays, and by distribut-

ing the workload of user request to several sites where the subtasks of a user

request can be processed concurrently. These benefits of replication must

be seen in the light of the additional cost and complexities introduced by

replication control. Replica control algorithms are mechanisms to manage

a physically distributed collection of data objects to appear as if it were a

single, highly available data object. The following axe some of the existing

algorithms(e.g. [13, 3, 4, 11, 12, 14, 20, 27, 16, 32, 33, 15, 25, 36, 9, 34]) in

this area.

Existing algorithms for update synchronization in replicated database

system follow a semidistributed model of update execution because only one

site completely executes an update and other sites just commit its writes. In

[32], M. Singhal presents a fully-distributed approach to update synchroniza-

tion where each site completely executes every update. This can certainly

improve the performance by its parallelism. Slow machines will not slow

down the whole system. Also it reduces the communication overhead.

In replicated database consistency may have two meaning: internal con-

sistency and mutual consistency. Internal consistency deals with the se-

mantics of data objects within a single database copy; mutual consistency

requires that all database copies have the same value at one time. [32] deals

with internally consistent state. I.e. when all update activity ceases, all

copies of the replicated database must reach the same value. Since each

site completely executes every update, a write only has to lock one copy.

This one copy lock for write results in shorter response time and shorter

lock holding time. There will be less interaction among sites, so less time

wasted on synchronization. Reliability and availability are improved. And

one site's failure will not affect the whole system since it wiU not block any

operations.

The standard quorum consensus method requires a majority of sites

to be involved in write operations. It can turn out to be very expensive

when the number of sites is very large. A. Kumar presents a method which

organizes a group of objects into a multi-level hierarchy[15]. At each level

it applys the same rules of quorum consensus algorithm, i.e. a majority

of sites have to participate in the operation of writes and the number of

sites involved in reads and writes to the same object has to exceed the

total number of sites. It will greatly reduce the number of sites involved in

operations. Therefore it will definitely reduce the average message cost. A

performance comparison, in terms of availability and message cost against

majority voting and dynamic voting is carried out. It shows an improvement

in the message cost, but no single method was found to dominate in terms

of availability.

In [27], Pu, Left et al introduce the idea of valued redundancy. It says

that any object can have a value for its redundancy. By replicating only the

most valuable objects, we can improve the performance of the distributed

systems. The value of the system is determined by its usefulness and main-

tenance cost. There is a difference between weighted voting and valued re-

dundancy:Weightedvoting is an algorithm to maintain consistency among

the copies of an object. Valued redundancy is an approach to manage the

degree of redundancy for replicated data. Weights are assigned to the copies

in weighted voting to represent the static difference relative to each other. A

copy residing on a faster machine would receive a heavier weight. Values are

assigned to the copies to represent the dynamic properties relative to other

resources in the system, so a higher value for a copy would keep it longer

in the local cache. An object with low frequence of write, high frequence of

read will have higher value. That is to say, we should have more copies of

this object to keep high availability.

Replication is the key factor in making distributed real-time systems

more reliable than centralized ones. However, if replication is used without

proper synchronization mechanisms, consistency of the system might be vi-

olated. In [34], S.H.Son presents a synchronization algorithm for distributed

real-time systems with replicated data. It reduces the time required to ex-

ecute physical write operations when updates axe to be made on replicated

data objects, by relaxing the level of synchronization between write opera-

tions on data objects and physical write operations on copies of them. At

the same time, the consistency of replicated data is not violated, and the

atomicity of transactions is maintained. The algorithm exploits the mul-

tiple versipns of a data object and the semantic information of read-only

transactions is achieving improved system performance. The algorithm also

extends the notion of primary copies such that an update transaction can be

executed provided at least on token copy of each data object in the write set

is available. The number of tokens for each data object can be used as a tun-

ing parameter to adjust the rebustness of the system. Multiple versions are

maintained only at the read-only copy sites, hence the storage requirement

is reduced.

Reliability does not come for free. There is a cost associated with the

replication of data: storage requirement and complicated control in synchro-

nization. For appropriatem ogement3:f multiple versions, some communi-

cation cost is inevitable to inform data objects about activities of read-only

transactions. There is also a cost associated with maintaining the data

structures for keeping track of versions and time-stamp.

Replication is introduced into distributed systems to improve availability

which will result in fault-tolerance and high concurrency. These may be

achieved at the cost of deteriorated performance in the sense of response

time of update operations. How to achieve all these at the lowest cost of

deteriorated performance is our research goal in the area of replica control.

3 Proposed Work

As mentioned in the introduction, we are interested in the design and anal-

ysis of algorithms for distributed real-time systems. We are especially inter-

ested in the consistency control algorithms for these systems.

In general, distributed systems are characterized by the distribution of

resources. Whether the access control to the resources is centralized or

distributed is still the choice of the designer. While distributed control

enhances the system robustness to component failures, it has an associated

cost for coordination among the control components. Since much of the

work in distributed systems is aimed at building robust systems as opposed

to building cost-effective and efficient systems, cost and time have been

secondary objectives for designers.

Real-time systems, on the other hand, are designed with the primary ob-

jective of meeting the time-constraints of its requests. Both system cost and

robustness have been the secondary objectives for the design. Accordingly,

much of the effort in this area has been in developing efficient centralized

control algorithms. In particular, considerable efforts are expended in the

development of centralized scheduling algorithms.

However, knowing the criticality of the applications for which the real-

time systems are implemented, robustness appears to be a necessary char-

acteristic of these systems. Whether it is possible to effectively include

both robust control and time-critical constraints into distributed real-time

algorithms is the topic of investigation of this research. Especially, we are

interested in the following three issues.

. Can resource rephcation be used to facilitate meeting the task dead-

lines in distributed real-time systems? In case replication is present,

determine the types of replica control algorithms suitable to meet the

time-critical needs as well as the consistency needs of the applications.

. Similarstudiesarenecessaryfordesigningmutual exclusionalgorithms

especiallysuitablefordistributedreal-timesystems. Investigatethe

suitabilityof the existingdistributedmutual exclusionalgorithmsfor

real-timeapplications.Ifthey axe found to be unsuitable,identify

the inherent characteristics of the applications and those of the mu-

tual exclusion problems that contribute to the problem. Using this

information, state the trade-off relationship between the application

requirements and those of the distributed mutual exclusion solutions.

This study could lead to more application specific solutions to mutual

exclusion in distributed real-time systems.

. In addition, we propose to study other aspects of the relationships

among the three important factors in these systems: time-boundedness,

robustness, and consistency. (Note: Answers to this issue will be found

as we proceed with research on issues 1 and 2.)

Since real-time communication is already a well-researched area, we do not

intend to invent new algorithms in the area of real-time communications.

Instead, we propose to choose a set of existing algorithms with known char-

a_teristics (time-boundedness, robustness, and consistency) and pursue the

above mentioned issues. Following is a detailed discussion of the issues that

10

weproposeto investigate.

3.1 Mutual Exclusion

3.1.1 Problem Statement

As mentioned in Section 2.1, several solutions are proposed to solve the

mutual exclusion problem in distributed systems. It is not clear if these

algorithms are also applicable to distributed real-time systems. In fact,

due to the absence of any guaranteed performance bounds, most of the

algorithms may not be suitable for real-time applications. When we consider

solutions for mutual exclusion problems in general distributed systems, we

only consider the performance criteria such as average response time, average

throughput, and resource utilization. But in real-time applications, meeting

time-constraints is considered more important than anything else. Here it is

desirable to perform tasks as fast as possible, but it is more important that

they meet their deadlines. So how to adapt the existing consistency control

schemes to real-time applications, how to develop new schemes, and how

to evaluate these schemes in the environment of real-time applications are

the goals of this research. Specifically, we will concentrate on the following

issues:

• Develop criteria to classify/evaluate mutual exclusion algo-

rithms of distributed real-time systems. This work should re-

sult in metrics to express the suitability of a given ME algorithm to

distributed real-time applications. Even though the optimistic algo-

rithms appear to be more suitable to real-time applications than the

conservative ones, it is not clear if this classification is sufficient.

• Suggest modifications to existing mutual exclusion algorithms

to meet the needs of real-time applications. Having arrived at

a classification, we propose to analyze some of the existing ME al-

11

gorithmsand classifythem accordingly.In addition, weproposeto

suggestmodificationsto the algorithmsto transfer them from a less

suitable class to a more desirable class. This should be possible by

changing the grant/release rules in an algorithm.

Develop new mutual exclusion algorithms for distributed real-

time systems. Using the properties derived from the classification,

we will attempt to construct new algorithms that are suitable for real-

time applications. In fact, it may result in a suite of algorithms where

the choice will depend on the semantics of the application.

Evaluate the algorithms using the criteria developed above.

This may involve using both analytical and simulation tools.

Develop guidelines for future development. If in the process of

development and analysis, we have developed sufficient insight regard-

ing the applications and the algorithms, we may be able to develop

some general guidelines for future work. However, this should be per-

ceived more as wishful thinking than as a promised delivery.

3.1.2 Research Outline

First of all, we will study the existing mutual exclusion algorithms. We

will examine their suitability in the environment of real-time applications.

Different real-time applications may have different conditions and require-

ments. For example, in some applications, the load at each node is uniform,

while in other applications load vary from node to node to a great extent. In

some applications, the time constraints may be hard, while in others it may

be soft. These are the different requirement put on the systems. Some of the

algorithms may suit better in applications with certain kind of conditions

and requirements while others may suit better in other applications.

12

Second,we should look into the possibilities of making minor modifi-

cations to the existing mutual exclusion algorithms to adapt them to the

real-time applications. For example, if we take Lamport's mutual exclusion

algorithm, mutual exclusion requests are served on the basis of FCFS ac-

cording to the logical timestamps. If in real-time applications, we will server

these mutual exclusion requests according to their slack times, it may solve

the mutual exclusion problem of soft real-time applications.

Thirdly, we can also develop new algorithms just for real-time applica-

tions. Here we will determine the application's circumstances and require-

ments and build new schemes which will produce favorable performance

results in these applications.

Fourth, we will examine the fault-tolerance feature of these mutual ex-

clusion algorithms for distributed real-time systems.

3.1.3 Evaluations

We will evaluate the mutual exclusion algorithms under some chosen cir-

cumstances:

• Selectionof the underlyingarchitecture:We willmainly considerthe

bus structureoflocalareanetworks.In addition,we willconsiderpint-

to-pointlinkednetworks. In choosingthe appropriatebus structure,

we rreedtoconsiderfactorssuch as(1)whether or not the bus conforms

to a standard specification;(2)the expected futurecompatibilityfor

an expanded system; (3) the arbitrationmethod used in minimizing

contentionforthe bus;(4)the totalbandwidth of the bus;In addition

• The natureof arrivalsof mutual exclusionrequests,

• Distributionof mutual exclusionrequestsamong processes,and

• Distribution of execution times of these requests.

13

According to the application requirements, we will develop criteria for

these distributed real-time systems. The possible criteria may include:

• The successful rate of meeting deadlines: what is the rate of tasks with

time constraints meeting their deadlines?

• If it is a soft real-time application, how will we evaluate the satisfac-

tion rate of time constraints in practical situation? What will be an

appropriate measure for the performance?

• Throughput: in mutual exclusion throughput may be, to some extent,

determined by the response time. The faster these mutual requests

are processed, the higher the throughput.

• The utilization: what will be the utilization of the resources?

• The overhead: what will be the amount of traffic caused by these

algorithms? What will be the complexity of these algorithms, i.e. how

much of the CPU time will they take?

3.1.4 How to Achieve It?

In the past, we have built analytical and simulation models for typical log-

ical token ring mutual exclusion algorithm and have got some result of the

performance of distributed systems such as response time, token rotation

time, throughput, and resource utilization. We can extend these studies to

measure the time boundedness of the systems. We propose to carry out sim-

ilax performance studies with different underlying architectures, reliability

of resources, etc.

Lastly, the result will be explained, conclusions will be drawn, experience

will be gathered, which may be of great help for the studies of replica control

problem in real-time applications.

14

3.2 Replica Control

3.2.1 Problem Statement

As mentioned in Section 2.3, replication is claimed to improve fault-tolerance

and availability of distributed systems. These goals are achieved through

appropriate replica control algorithms that control the number of copies to

be accessed for read and write operations on resources. Clearly, the time-

bound aspect of transactions (or requests) was hardly considered in the

design of these algorithms.

Some of the concerns in applying the existing replica control algorithms

to distributed real-time systems are:

• Will replication help in the distributed real-time systems? If yes, how

can the replication in distributed systems help in distributed real-time

systems?

• While the algorithms perform well under failures, the overhead is high

when no failures are present. In the context of real-time systems, we

need acceptable performance (time-bounded response time, for exam-

ple) under all conditions.

• If the requests to local resources are more frequent than non-local

accesses, the replica-control algorithm should be modified accordingly.

In particular, we wiLl concentrate on the following issues:

• Model some typical application related semantics where replication is

needed to improve the reliability and availability.

• Develop criteria to evaluate the replica control algorithms of distributed

real-time systems.

• Study the existing replica control algorithms in the environment of

real-time applications. Characterize them in terms of their suitability

to real-time systems.

15

• Develop new replica control algorithms for distributed real-time sys-

tems.

• Evaluate the algorithms with the established criteria.

3.2.2 Research Outline

First of all, we will study the existing replica control algorithms. We will

examine their suitability in the environment of real-time applications. Dif-

ferent real-time applications may have different conditions and requirements.

Some of the algorithms may suit better in applications with certain kind of

conditions and requirements while others may suit better in other applica-

tions.

For example, the semantics of the applications may vary. In some appli-

cations, a weaker ordering like a causal order will be required; In others, a

stronger ordering like non-deterministic total order may be required; Still in

others, a total order may be needed. With different requirements, we may

apply different replica control mechanisms to improve the response time and

availability.

Second, we should analyze the existing replica control algorithms to see

their suitability to the real-time applications. By suitability, we mean their

satisfaction to certain criteria, which we will mention in the following section.

But since requirement of applications may vary, criteria for the applications

may be different. This work will involve some simulation and analysis.

Thirdly, we should develop new algorithms for real-time applications.

Here we will determine the application's circumstances and requirements

and develop new schemes which will produce favorable performance results

in these applications. The good features of distributed systems that will be of

benefit to real-time applications are high availability and reliability, which

can be achieved by redundant resources. So some possible potentials in

developing new algorithm for replica control are keeping redundant resources

16

and multiple versions. It will be at the cost of more storage needed and more

execution time. How to develop new algorithms with good performance with

low cost is what we are going to work on in this research.

Fourth, we will examine the fault-tolerance feature of these replica con-

trol algorithms for distributed real-time systems. The primary mechanism

for achieving the required degree of reliability in real-time systems is the use

of redundancy. In a monolithic system, this means having a complete spare

computer that is switched in when a failure is detected. A distributed sys-

tem is easier to design for fault tolerance and is usually more cost effective

than a monolithic system. Redundant hardware elements in a distributed

system can be limited to replacing only a fraction of the total number of

processors and certain of the other elements, but not the complete system.

Software redundancy is also part of the overall design strategy to achieve

fault tolerance. The degree of fault tolerance built into a system can range

from an almost 100 percent reliability with standby auto-switchable spares,

to a state of graceful degradation where as much backup and recovery as

possible is performed before the system is brought down for repair or bug

fixes. We will investigate the system degradation under faulty situations.

3.2.3 Evaluation

We will evaluate the replica control algorithms under some chosen circum-

stances:

• What will be the underlying architecture?

• What will be the semantic information of a chosen application?

• What will be the data distribution on the distributed systems?

• What will be the locality of data access of transactions?

• What will be the reliability of these data resources?

17

• Shouldwe have more redundancy for the more critical data objects?

• What will be the distribution of transaction execution time of these

requests?

These are the conditions we have to consider when we are building the model

for performance analysis.

According to the application requirements, we will develop criteria for

these distributed real-time systems. The possible criteria may include:

• Under what situation will replication help in real-time distributed sys-

tems? In what ways?

• For a chosen model, what will be the good degree of replication? There

will be a trade-off between availability and complexity of operations.

• The successful rate of meeting deadlines: what is the rate of tasks with

time constraints meeting their deadlines?

• If it is a soft real-time application, how will we evaluate the satisfac-

tion rate of time constraints in practical situation? What will be an

appropriate measure for the performance?

• Throughput: what will be the throughput of the system?

• The utilization: what will be the utilization of the resources?

• The overhead: what will be the mount of traffic caused by these

algorithms? What will be the complexity of these algorithms, i.e. how

much of the CPU time will they take?

3.2.4 How to Achieve It?

First we will build models for typical semantic applications with param-

eters such as the underlying architecture, data distribution, reliability of

18

resources,localityof data access,redundancy of resources,and transaction

executiontime distribution.Because ofthe complexityofthesystems,simu-

lationwillbe the main toolused to analyzethesemodels. When itbecomes

dii_cultto evaluatethe performance with reasonableamount of simulation

time, we may resortto approximate analyticalmodel to help simulation.

The det_Is willbe clearas we proceed along with the research.

Appropriate valueswillbe chosen fortheseparameters to run the sim-

ulation.The impact of the parameters willbe observed,and we willtry to

run the simulationonly with the variationof important parameters.

Most importantly,we willsee the impact of replicationto the perfor-

mance of the distributedreal-timesystems. The performance criteriain-

clude the successfulrateof meeting deadlines,the satisfactionof reaJ-time

constraintsaccordingto the application,the throughput,the resourceuti-

llzationand the overhead of implementing the testedmechanism.

The resultwillbe explained,which may again help developing good

algorithmsfordistributedreal-timesystems.

4 Plan

We propose to complete the researchin the next 18 months. Followingisa

det_led plan of activities.

1. May'92 - August'92: Survey the requirements of some typical dis-

tributed real-time systems and build models for these systems.

2. August'92 - October'92: Develop criteria to evaluate the perfor-

mance of distributed real-time systems. The selection of criteria should

take into account their usability in design and analysis of these systems

as well as the ease with which they could be measured.

3. October'92 - December'92: Classify a chosen set of existing mu-

tual exclusion and replica control algorithms currently in use in dis-

19

4.

.

,

.

.

°

tributed systems using the criteria developed above.

August'92 - February'93: Develop simulation tools to evaluate

the mutual exclusionand replicacontrolalgorithms. Also, develop

analyticaltoolsto solvedesign problems such as optimal degree of

replication,placement of resources,etc. The analyticaltoolsshould

alsobe developed to approximate the expected performance of the

systems. These approximationscould be used to validatethe results

obtained through simulations.

December'92 - February'93: Attempt to modify the existing mu-

tual exclusion algorithms to improve their applicability to real-time

applications.

February'93 - April'93: Attempt to modify the existing replica

control algorithms to meet the needs of real-time applications.

February'93 - July'93: Evaluate the modified mutual exclusion and

replica control algorithms in terms of the criteria chosen above, and

use the tools developed above.

July'93 - September'93: Interpret the obtained results and draw

conclusions regarding the desirable characteristics of mutual exclusion

and replica control algorithms. Using these, identify key factors of

applications and the systems that need closer scrutiny before we se-

lect/design a system for a given application. ILlustrate the efficacy of

this approach by developing algorithms for a chosen set of applications.

Also formulate general guidelines for future developments.

September'93 - December'93: Complete writing the thesis and

defend.

20

References

[i]T. Ae, M. Yam_hita, and H. Matsumoto. A response time estimation

of rea_-time networks. Proceedings real-time systems symposium, pages

198-207, Dec.87.

[2] Divyakant Agrawal and Amr E1 Abbadi. An efficient and fault-tolerant

solution for distributed mutual exclusion. ACM transactions on com-

puter systems, Vol 9, No. 1:1-20, Feb.91.

[3] B. S. Bacarisse and S. Bek Baydere. Reliability of replicated files in

partitioned networks. IEEE, pages 98-101, Mar.90.

[4] Daniel Barbara and Hector Garcia-Molina. The case for controlled

inconsistency in replicated data(position paper). IEEE, pages 35-38,

Mar.90.

[5]

[6]

[7]

[8]

[9]

Devesh Bhatt, Adel Ghonami, and Ranga Ramanujan. An instru-

mented testbed for real-time distributed systems development. Pro-

ceedings real-time systems symposium, pages 241-250, Dec.87.

Ye-In Chang, Mukesh Singhal, and Ming T. Liu. An improved o(log n)

mutual exclusion algorithm for distributed systems. 1990 International

Conference on parallel processing, pages III295-III302, 90.

Ye-In Chang, Mukesh Singhal, and Ming T. Liu. A fault tolerant al-

gorithm for distributed mutual exclusion. 9th Synposium on Reliable

Distributed System, Oct.90.

W. W. Chu and C.-M. Sit. Estimating task response time with con-

tentions for real-time distributed systems. Proceedings real-time systems

symposium, pages 272-281, Dec.88.

Bruno Ciciani, Daniel M. Dias, and Philip S. Yu. Analysis of replication

in distributed database systems.

21

[10] L. Ciminieraand A. Valenzano.Performanceanalysisof acknowledg-

mentmechanismsin token-busnetworks.Proceedings real-time systems

symposium, pages 179-185, Dec.87.

[11] Anna Hac. A distributed algorithm for performance improvement

through file repLication, file migration, and process migration. IEEE

transactions on software engineering, Vol. 15, No. 11:1459-1470, Nov.89.

[12] Maurice HerLihy. Type-specific replication algorithms for multiproces-

sors. IEEE, pages 70-74, Mar.90.

[13] Hui-I Hsiao and David J. DeWitt. RepLicated data management in the

gamma database machine. IEEE, pages 79-84, Mar.90.

[14] James Jay Kistler. Increasing file system availabiLity through second-

class replication. IEEE, pages 65-69, Mar.90.

[15] Akhil Kumar. Performance analysis of a hierarchical quorum consensus

algorithm for repLicated objects. IEEE, Jul.90.

[16] R.ivka Ladin. Lazy repLication: Exploiting the semantics of distributed

services. IEEE, pages 31-34, Mar.90.

[17] L. Lamport. Time, clocks and ordering of events in distributed systems.

Communications of A CM, pages 558--565, Jul.78.

[18] Shem-Tov Levi and Ashok K. Agrawala. Real-time system design, 90.

[19] Shem-Tov Levi, Daniel Mosse, and Ashok K. Agrawala. Allocation of

real-time computations under fault tolerance constraints. Proceedings

real-time systems symposium, pages 161-171, Dec.88.

[20] Darrell D. E. Long. Analysis of replication control protocols. IEEE,

pages 117-122, Max.90.

22

[21] M. Maekawa.A v/N algorithm for mutual exclusion in dicentrMized sys-

tems. ACM transaction on computer systems, pages 145-159, May.85.

[22] Frank William Miller. A predictive real-time scheduling algorithm. De-

partment of computer science, the university of Iowa, Aug.89.

[23] Masaaki Mizuno, Mitchell L. Neilsen, and Raghavendra Rao. A token

based distributed mutual exclusion algorithm based on quorum agree-

ments. IEEE, pages 361-368, Jul.91.

[24] Sape MuUender. Distributed systems. ACM, 89.

[25] R. D. Nelson and B. R. Iyer. Analysis of a replicated data base. Per-

formance Evaluation, pages 133-148, May.85.

[26] Francis J. Prusker, Edward PI Wobber, Wei Zhao, Krithivasan Ra-

mamritham, and John A. Stankovic. The siphon: managing distant

replicated repositories scheduling tasks with resource requirments in

hard real-time systems. IEEE proceedings of the workshop on manage-

ment of replicated data IEEE transactions on software engineering, Vol.

SE-13, No. 5:44-47 564-573, Nov.90 May.87.

[27] Calton Pu, Avraham Left, Frederick Korz, and Shu-Wie Chen. Valued

redundancy. IEEE, pages 76-78, Mar.90.

[28] Kerry Raymond. A tree-based algorithm for distributed mutual exclu-

sion. A CM transactions on computer systems, pages 61-77, Feb.89.

[29] Beverly A. Sanders. The information structure of distributed mutual

exclusion algorithms, Jun.86.

[30] Mukesh Singhal. A dynamic information-structure mutual exclusion

algorithm for distributed systems. IEEE ICDCS, pages 70-78, 89.

23

[31] Mukesh Singhal. Theory and construction of optimal dynamic

information-structure mutual exclusion algorithms for distributed sys-

tems. IEEE transaction on parallel and distributed systems, pages 70-

78, 89.

[32] Mukesh Singhal. Update transport: a new technique for update syn-

chronization in replicated database systems. IEEE transactions on soft-

ware engineering, Vol.16, No.12:1325-1336, Dec.90.

[33] Mukesh Singhal and A. K. Agrawala. A concurrency control algorithm

and its performance for replicated database systems. IEEE, pages 140-

147, Sep.86.

[34] S. H. SON. Using replication for high performance database support

in distributed real-time systems. Proceedings real-time systems sympo-

sium, pages 79-85, Dec.87.

[35] Jay K. Strosnider, Tom Marchok, and John Lehoczky. Advanced real-

time scheduling using the ieee 802.5 token ring. Proceedings real-time

systems symposium, pages 42-52, Dec.88.

[36] U. Sumita and O. R. Liu Sheng. Analysis of query processing in dis-

tributed database systems with fully replicated files: A hierarchical

approach. Perfornamce Evalluation, pages 223-238, Aug.88.

[37] H. F. Wedde, G. S. Alijani, F. Kang, and B.-K. Kim. Melody: a

distributed real-time testbed for adaptive systems. Proceedings real-

time systems symposium, pages 112-119, Dec.88.

[38] C. M. Woodside and D. W. Craig. Local non-preemptive scheduling

policies for hard real-time distributed systems. Proceedings real-time

systems symposium, pages 12-16, Dec.87.

24

[39] WeiZhao,KrithivasanRamamritham,andJohnA. $tankovic. Preemp-

tive scheduling under time and resource constraints. IEEE transactions

on computers, Vol. C-36, No. 8:949-960, Aug.87.

25

